This review describes the epidermal and glandular chemistry of nonavian reptiles in relation to proposed functions, and includes more than 170 references. The results are presented according to the different reptile taxa.
We compiled a data set of the compounds that terrestrial vertebrates (amniotes) use to send chemical signals, and searched for relationships between signal compound properties and signal function. Overall, relationships were scarce and formed only small-scale patterns. Terrestrial vertebrate signalling compounds are invariably components of complex mixtures of compounds with diverse molecular weights and functionalities. Signal compounds with high molecular weights (MWs) and low vapour pressures, or that are bound to carrier proteins, are detected during direct contact with the source of the signal. Stable compounds with aromatic rings in their structures are more common in signals of social dominance, including territoriality. Aldehydes are emitted from the sender's body rather than from scent marks. Lipocalin pheromones and carriers have a limited range of MWs, possibly to reduce the metabolic costs of their biosynthesis. Design constraints that might channel signal chemistry into patterns have been relaxed by amniote behavior and biochemistry. Amniote olfaction has such a high sensitivity, wide range and narrow resolution that signal detection imposes no practical constraints on the structures of signalling molecules. Diverse metabolic pathways in amniotes and their microbial commensals produce a wide variety of compounds as chemical signals and as matrix compounds that free signal components from the constraints of stability, vapor pressure, species-specificity etc. that would otherwise constrain what types of compound operate optimally under different conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.