Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Elaborate mechanisms have evolved for the translocation of nucleus-encoded proteins across the plastid envelope membrane. Although putative components of the import apparatus have been identified biochemically, their role in import remains to be proven in vivo. An Arabidopsis mutant lacking a new component of the import machinery [translocon at the outer envelope membrane of chloroplasts (Toc33), a 33-kilodalton protein] has been isolated. The functional similarity of Toc33 to another translocon component (Toc34) implies that multiple different translocon complexes are present in plastids. Processes that are mediated by Toc33 operate during the early stages of plastid and leaf development. The data demonstrate the in vivo role of a translocon component in plastid protein import.
Development of chloroplasts and other plastids depends on the import of thousands of nucleus-encoded proteins from the cytosol. Import is initiated by TOC (translocon at the outer envelope of chloroplasts) complexes in the plastid outer membrane that incorporate multiple, client-specific receptors. Modulation of import is thought to control the plastid's proteome, developmental fate, and functions. Using forward genetics, we identified Arabidopsis SP1, which encodes a RING-type ubiquitin E3 ligase of the chloroplast outer membrane. The SP1 protein associated with TOC complexes and mediated ubiquitination of TOC components, promoting their degradation. Mutant sp1 plants performed developmental transitions that involve plastid proteome changes inefficiently, indicating a requirement for reorganization of the TOC machinery. Thus, the ubiquitin-proteasome system acts on plastids to control their development.
ReviewB l a c k w e l l P u b l i s h i n g L t d O x f o r d , U K N P H N e w P h y t o l o g i s t 0 0 2 8 -6 4 6 X 1 4 6 9 -8 1 3 7 © T h e A u t h o r s ( 2 0 0 8 ) . J o u r n a l c o m p i l a t i o n © N e w P h y t o l o g i s t ( 2 0 0 8 ) 10.1111/j. 1469-8137.2008 SummaryMost chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic Plastids are a diverse group of organelles found ubiquitously in plant cells (Whatley, 1978), as well as in apicomplexan parasites (Foth & McFadden, 2003). The most prominent and wellstudied members of this plastid family are the chloroplasts. These contain the green pigment chlorophyll and carry out the light-driven carbon fixation reactions of photosynthesis, as well as important steps in the biosynthesis of many essential primary and secondary metabolites (Nelson & Ben-Shem, 2004;Lopez-Juez & Pyke, 2005). Other plastid family members are the amyloplasts, which contain large amounts of starch and play important roles in energy storage and gravitropism, and the chromoplasts, which accumulate red, orange or yellow carotenoid pigments and act as attractants in flowers and fruits (Neuhaus & Emes, 2000;Lopez-Juez & Pyke, 2005). Like mitochondria, plastids entered the eukaryotic lineage through endosymbiosis. It is thought that they evolved monophyletically from an ancient photosynthetic prokaryote similar to extant cyanobacteria (Larkum et al., 2007; ReyesPrieto et al., 2007). While plastids retain a functional genetic system of their own, the organellar genome is greatly reduced and typically encodes just ...
The initial stages of preprotein import into chloroplasts are mediated by the receptor GTPase Toc159. In Arabidopsis thaliana, Toc159 is encoded by a small gene family: atTOC159, atTOC132, atTOC120, and atTOC90. Phylogenetic analysis suggested that at least two distinct Toc159 subtypes, characterized by atToc159 and atToc132/atToc120, exist in plants. atTOC159 was strongly expressed in young, photosynthetic tissues, whereas atTOC132 and atTOC120 were expressed at a uniformly low level and so were relatively prominent in nonphotosynthetic tissues. Based on the albino phenotype of its knockout mutant, atToc159 was previously proposed to be a receptor with specificity for photosynthetic preproteins. To elucidate the roles of the other isoforms, we characterized Arabidopsis knockout mutants for each one. None of the single mutants had strong visible phenotypes, but toc132 toc120 double homozygotes appeared similar to toc159, indicating redundancy between atToc132 and atToc120. Transgenic complementation studies confirmed this redundancy but revealed little functional overlap between atToc132/atToc120 and atToc159 or atToc90. Unlike toc159, toc132 toc120 caused structural abnormalities in root plastids. Furthermore, when proteomics and transcriptomics were used to compare toc132 with ppi1 (a receptor mutant that is specifically defective in the expression, import, and accumulation of photosynthetic proteins), major differences were observed, suggesting that atToc132 (and atToc120) has specificity for nonphotosynthetic proteins. When both atToc159 and the major isoform of the other subtype, atToc132, were absent, an embryo-lethal phenotype resulted, demonstrating the essential role of Toc159 in the import mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.