Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
OBJECTIVE-To characterize the voltage-gated ion channels in human -cells from nondiabetic donors and their role in glucosestimulated insulin release.RESEARCH DESIGN AND METHODS-Insulin release was measured from intact islets. Whole-cell patch-clamp experiments and measurements of cell capacitance were performed on isolated -cells. The ion channel complement was determined by quantitative PCR.RESULTS-Human -cells express two types of voltage-gated K ϩ currents that flow through delayed rectifying (K V 2.1/2.2) and large-conductance Ca 2ϩ -activated K ϩ (BK) channels. Blockade of BK channels (using iberiotoxin) increased action potential amplitude and enhanced insulin secretion by 70%, whereas inhibition of K V 2.1/2.2 (with stromatoxin) was without stimulatory effect on electrical activity and secretion. Voltage-gated tetrodotoxin (TTX)-sensitive Na ϩ currents (Na V 1.6/1.7) contribute to the upstroke of action potentials. Inhibition of Na ϩ currents with TTX reduced glucose-stimulated (6 -20 mmol/l) insulin secretion by 55-70%. Human -cells are equipped with L-(Ca V 1.3), P/Q-(Ca V 2.1), and T-(Ca V 3.2), but not N-or R-type Ca 2ϩ channels. Blockade of L-type channels abolished glucosestimulated insulin release, while inhibition of T-and P/Q-type Ca 2ϩ channels reduced glucose-induced (6 mmol/l) secretion by 60 -70%. Membrane potential recordings suggest that L-and T-type Ca 2ϩ channels participate in action potential generation. Blockade of P/Q-type Ca 2ϩ channels suppressed exocytosis (measured as an increase in cell capacitance) by Ͼ80%, whereas inhibition of L-type Ca 2ϩ channels only had a minor effect.CONCLUSIONS-Voltage-gated T-type and L-type Ca 2ϩ channels as well as Na ϩ channels participate in glucose-stimulated electrical activity and insulin secretion. Ca 2ϩ -activated BK channels are required for rapid membrane repolarization. Exocytosis of insulin-containing granules is principally triggered by Ca 2ϩ influx through P/Q-type Ca 2ϩ channels. Diabetes 57:1618-1628, 2008
SUMMARY A significant portion of the genome is transcribed as long non-coding RNAs (lncRNAs), several of which are known to control gene expression. The repertoire and regulation of lncRNAs in disease-relevant tissues, however, has not been systematically explored. We report a comprehensive strand-specific transcriptome map of human pancreatic islets and β-cells, and uncover >1100 intergenic and antisense islet-cell lncRNA genes. We find islet lncRNAs that are dynamically regulated, and show that they are an integral component of the β-cell differentiation and maturation program. We sequenced the mouse islet transcriptome, and identify lncRNA orthologs that are regulated like their human counterparts. Depletion of HI-LNC25, a β-cell specific lncRNA, downregulated GLIS3 mRNA, thus exemplifying a gene regulatory function of islet lncRNAs. Finally, selected islet lncRNAs were dysregulated in type 2 diabetes or mapped to genetic loci underlying diabetes susceptibility. These findings reveal a new class of islet-cell genes relevant to β-cell programming and diabetes pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.