The population dynamics of the palatable, perennial grasses Bothriochloa ewartiana (Domin) C.E.Hubb. (desert Mitchell grass), Chrysopogon fallax S.T.Blake (golden beard grass) and Heteropogon contortus (L.) P.Beauv. ex Roem. & Schult. (black speargrass), were studied in an extensive grazing study conducted in a eucalypt woodland within the Aristida–Bothriochloa pasture community in central Queensland between 1994 and 2000. Treatments were three grazing pressures based on light, medium and heavy utilisation of forage available at the end of summer and two timber treatments (trees intact and trees killed). Seasonal rainfall throughout this study was generally favourable for plant growth with no severe drought periods. Grazing pressure had a greater overall impact on plant dynamics than timber treatment, which had minimal impact. Grazing pressure had a large impact on H. contortus dynamics, an intermediate impact on B. ewartiana and no impact on C. fallax. Fluctuations in plant density of both B. ewartiana and C. fallax were small because both species were long lived with low levels of seedling recruitment and plant death, whereas fluctuations in H. contortus density were relatively high because of its relatively short life span and higher levels of both recruitment and death. Heavy grazing pressure increased the recruitment of B. ewartiana and H. contortus in some years but had no impact on that of C. fallax. Heavy grazing pressure reduced the survival of the original plants of both B. ewartiana and H. contortus but not of C. fallax. For H. contortus, the size of the original plants was larger where trees were killed than where trees were left intact and plants of the 1995 seedling cohort were larger in 1998 at heavy compared with those at light and medium grazing pressure. Grazing had a minor negative impact on the soil seed bank of H. contortus. Populations of all three species remained stable throughout this study, although the favourable seasonal rainfall experienced and the short duration of this study relative to the life span of these species may have masked longer term, deleterious impacts of heavy grazing pressure.
Historical stocking methods of continuous, season-long grazing of pastures with little account of growing conditions have caused some degradation within grazed landscapes in northern Australia. Alternative stocking methods have been implemented to address this degradation and raise the productivity and profitability of the principal livestock, cattle. Because information comparing stocking methods is limited, an evaluation was undertaken to quantify the effects of stocking methods on pastures, soils and grazing capacity. The approach was to monitor existing stocking methods on nine commercial beef properties in north and south Queensland. Environments included native and exotic pastures and eucalypt (lighter soil) and brigalow (heavier soil) land types. Breeding and growing cattle were grazed under each method. The owners/managers, formally trained in pasture and grazing management, made all management decisions affecting the study sites. Three stocking methods were compared: continuous (with rest), extensive rotation and intensive rotation (commonly referred to as ‘cell grazing’). There were two or three stocking methods examined on each property: in total 21 methods (seven continuous, six extensive rotations and eight intensive rotations) were monitored over 74 paddocks, between 2006 and 2009. Pasture and soil surface measurements were made in the autumns of 2006, 2007 and 2009, while the paddock grazing was analysed from property records for the period from 2006 to 2009. The first 2 years had drought conditions (rainfall average 3.4 decile) but were followed by 2 years of above-average rainfall. There were no consistent differences between stocking methods across all sites over the 4 years for herbage mass, plant species composition, total and litter cover, or landscape function analysis (LFA) indices. There were large responses to rainfall in the last 2 years with mean herbage mass in the autumn increasing from 1970 kg DM ha–1 in 2006–07 to 3830 kg DM ha–1 in 2009. Over the same period, ground and litter cover and LFA indices increased. Across all sites and 4 years, mean grazing capacity was similar for the three stocking methods. There were, however, significant differences in grazing capacity between stocking methods at four sites but these differences were not consistent between stocking methods or sites. Both the continuous and intensive rotation methods supported the highest average annual grazing capacity at different sites. The results suggest that cattle producers can obtain similar ecological responses and carry similar numbers of livestock under any of the three stocking methods.
Managing and measuring the grazing and nutrition of cattle are required to improve the productivity and profitability of beef businesses in northern Australia. The quality and composition of the diet selected by cattle grazing in three stocking methods (continuous, extensive rotation and intensive (cell) rotation) on nine commercial properties in Queensland were estimated using near infrared reflectance spectroscopy analyses of fresh faeces; 585 faecal samples were analysed between 2005 and 2009. Sites were in two regions (north and south Queensland) and on two vegetation communities, namely brigalow (Acacia harpophylla F. Muell. ex Benth.) on clay soils and eucalypts on light-textured soil types. Pastures were dominated by perennial sown exotic grass species, predominantly Cenchrus ciliaris L. (buffel grass) at five sites and Urochloa mosambicensis (Hack.) (Sabi grass) at one site, and by native perennial tussock grasses at three sites. Seasonal profiles of dietary crude protein, dry matter digestibility, faecal nitrogen concentration, proportion of non-grass, ratio of crude protein to digestibility and an estimate of liveweight gain are presented for each stocking method. Overall, dietary crude protein, digestibility, faecal nitrogen, the crude protein : digestibility ratio and liveweight gain were significantly higher for animals grazed continuously, with short rest periods, than for animals in extensive or intensive rotations. There was a significant interaction between stocking method and pasture growing conditions, measured as a simulated growth index, for dietary crude protein and faecal nitrogen. There was no difference between stocking methods during periods when the index was <0.2, indicating no pasture growth, but during periods of active growth (index >0.5), crude protein and faecal nitrogen were higher with continuous grazing than in the extensive and intensive rotations. For cattle producers considering alternative stocking methods, the results suggest they can obtain similar ecological responses under any of the three methods and diet quality will be higher during the pasture growing period in continuously grazed pastures.
Clearing woodlands is practised worldwide to increase crop and livestock production, but can result in unintended consequences including woody regrowth and land degradation. The pasture response of two eucalypt woodlands in the central Queensland rangelands to killing trees with herbicides, in the presence or absence of grazing and regular spring burning, was recorded over 7 or 8 years to determine the long-term sustainability of these common practices. Herbage mass and species composition plus tree dynamics were monitored in two replicated experiments at each site. For 8 years following herbicide application, killing Eucalyptus populnea F. Muell. (poplar box) trees resulted in a doubling of native pasture herbage mass from that of the pre-existing woodland, with a tree basal area of 8.7 m2 ha–1. Conversely, over 7 years with a similar range of seasons, killing E. melanophloia F. Muell. (silver-leaved ironbark) trees of a similar tree basal area had little impact on herbage mass grown or on pasture composition for the first 4 years before production then increased. Few consistent changes in pasture composition were recorded after killing the trees, although there was an increase in the desirable grasses Dichanthium sericeum (R. Br.) A. Camus (Queensland bluegrass) and Themeda triandra Forssk. (kangaroo grass) when grazed conservatively. Excluding grazing allowed more palatable species of the major grasses to enhance their prominence, but seasonal conditions still had a major influence on their production in particular years. Pasture crown basal area was significantly higher where trees had been killed, especially in the poplar box woodland. Removing tree competition did not have a major effect on pasture composition that was independent of other management impositions or seasons, and it did not result in a rapid increase in herbage mass in both eucalypt communities. The slow pasture response to tree removal at one site indicates that regional models and economic projections relating to tree clearing require community-specific inputs.
Controlled burns are commonly used to suppress woody plant regrowth and to remove accumulated unpalatable pasture from rangelands and occasionally to alter pasture composition in native pastures in central Queensland, Australia. Outcomes can be somewhat unpredictable and short-term, and reliable evidence is needed to confirm the likely long-term efficacy of such fires. We imposed a regime of repeated spring burns on native Aristida/Bothriochloa pastures growing in two contrasting eucalypt woodlands of central Queensland to determine the effects on pasture composition, ground cover, landscape stability and woody plant recruitment, all in the absence of grazing. The sites selected were a silver-leaved ironbark (Eucalyptus melanophloia F.Muell.) woodland and a poplar box (E. populnea F.Muell.) woodland. Weather conditions precluded spring burns in 3 years out of 7 at the silver-leaved ironbark site and in 2 years out of 8 at the poplar box site. The burn intensity was variable, and frequent fires produced a marked change in abundance of only a few pasture species. Depending on the site, fires significantly increased the frequency of Enneapogon spp., Bothriochloa bladhii (Retz.) S.T.Blake and Dichanthium sericeum (R.Br.) A.Camus and reduced the frequency of some minor components such as Cymbopogon spp., Panicum effusum R.Br., Cenchrus ciliaris L. and, ephemerally, that of some forbs. Contrary to expectation, only Aristida calycina R.Br. declined in abundance among the many Aristida species present, and the abundance of Heteropogon contortus (L.) P.Beauv. ex Roem. & Schult. barely increased under regular spring fires. The total germinable seeds of herbaceous species in the soil each spring was significantly reduced by burning in the previous spring. Repeated spring fires rarely reinforced any initial change induced by burning, and slightly lowered average ground cover as well as various indices of landscape stability and ecosystem functionality. Changes produced were not always consistent across the two communities. Though prescribed burning is often important for maintaining grazing productivity and landscape values, very regular use is not recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.