Individual DNA molecules undergoing agarose gel electrophoresis were viewed with the aid of a fluorescence microscope. Molecular shape and orientation were studied in both steady and pulsed electric fields. It was observed that (i) DNA macromolecules advanced lengthwise through the gel in an extended configuration, (ii) the molecules alternately contracted and lengthened as they moved, (iii) the molecules often became hooked around obstacles in a U-shape for extended periods, and (iv) the molecules displayed elasticity as they extended from both ends at once. A computer model has been developed that simulates the migration of the molecules in a rotating-field gel electrophoresis experiment.
Near-infrared spectroscopy is evaluated as an on-line technique for monitoring the homogeneity of a pharmaceutical blend during the blending process. Blends containing 10% sodium benzoate (model active), which provided an aromatic functionality typical of many pharmaceutical compounds, 39% microcrystalline cellulose (Avicel PH102), 50% lactose, and 1% magnesium stearate were developed to mimic the properties of an actual pharmaceutical blend. A twin-shell V-blender was modified to allow installation of a diffuse reflectance fiber-optic probe at the axis of rotation, and spectra were collected during three experiments using a commercially available near-infrared spectrophotometer. In each experiment, blender control and spectral data collection were controlled by a compilation of software packages. The experiments detected spectral changes which eventually converged to a point of constant variance. Further analysis of the spectral data showed the blend is homogeneous long before a typical blending period is complete. Near-infrared spectroscopy has proven to be a feasible and effective method for the "real time" noninvasive determination of homogeneity in a pharmaceutical blend.
This paper reports a fast, sensitive pattern recognition
method for determining the polymorphic quality of a solid
drug substance, polymorph A. The pattern recognition
method employed can discriminate between the desired
polymorphic form of the drug substance and another
undesired polymorph. In addition, it can reliably
detect
samples containing minor levels of the undesired polymorph. The method can also discriminate between the
desired polymorph and other crystalline forms. Most
significantly, this sensitive method has been successfully
transferred to six other near-IR instruments without
resorting to sophisticated multivariate calibration
transfer
strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.