Wound healing is a complex process and has been the subject of intense research for a long time. The recent emergence of nanotechnology has provided a new therapeutic modality in silver nanoparticles for use in burn wounds. Nonetheless, the beneficial effects of silver nanoparticles on wound healing remain unknown. We investigated the wound-healing properties of silver nanoparticles in an animal model and found that rapid healing and improved cosmetic appearance occur in a dose-dependent manner. Furthermore, through quantitative PCR, immunohistochemistry, and proteomic studies, we showed that silver nanoparticles exert positive effects through their antimicrobial properties, reduction in wound inflammation, and modulation of fibrogenic cytokines. These results have given insight into the actions of silver and have provided a novel therapeutic direction for wound treatment in clinical practice.
Background The coronavirus disease 2019 (COVID-19) pandemic is having a profound impact on the health and development of children worldwide. There is limited evidence on the impact of COVID-19 and its related school closures and disease-containment measures on the psychosocial wellbeing of children; little research has been done on the characteristics of vulnerable groups and factors that promote resilience. Methods We conducted a large-scale cross-sectional population study of Hong Kong families with children aged 2–12 years. Parents completed an online survey on family demographics, child psychosocial wellbeing, functioning and lifestyle habits, parent–child interactions, and parental stress during school closures due to COVID-19. We used simple and multiple linear regression analyses to explore factors associated with child psychosocial problems and parental stress during the pandemic. Results The study included 29,202 individual families; of which 12,163 had children aged 2–5 years and 17,029 had children aged 6–12 years. The risk of child psychosocial problems was higher in children with special educational needs, and/or acute or chronic disease, mothers with mental illness, single-parent families, and low-income families. Delayed bedtime and/or inadequate sleep or exercise duration, extended use of electronic devices were associated with significantly higher parental stress and more psychosocial problems among pre-schoolers. Conclusions This study identifies vulnerable groups of children and highlights the importance of strengthening family coherence, adequate sleep and exercise, and responsible use of electronic devices in promoting psychosocial wellbeing during the COVID-19 pandemic. Electronic supplementary material The online version of this article (10.1007/s00787-020-01680-8) contains supplementary material, which is available to authorized users.
With advances in nanotechnology, pure silver has been recently engineered into nanometer-sized particles (diameter <100 nm) for use in the treatment of wounds. In conjunction with other studies, we previously demonstrated that the topical application of silver nanoparticles (AgNPs) can promote wound healing through the modulation of cytokines. Nonetheless, the question as to whether AgNPs can affect various skin cell types--keratinocytes and fibroblasts--during the wound-healing process still remains. Therefore, the aim of this study was to focus on the cellular response and events of dermal contraction and epidermal re-epithelialization during wound healing under the influence of AgNPs; for this we used a full-thickness excisional wound model in mice. The wounds were treated with either AgNPs or control with silver sulfadiazine, and the proliferation and biological events of keratinocytes and fibroblasts during healing were studied. Our results confirm that AgNPs can increase the rate of wound closure. On one hand, this was achieved through the promotion of proliferation and migration of keratinocytes. On the other hand, AgNPs can drive the differentiation of fibroblasts into myofibroblasts, thereby promoting wound contraction. These findings further extend our current knowledge of AgNPs in biological and cellular events and also have significant implications for the treatment of wounds in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.