We used the monogonont rotifer, Brachionus calyciflorus, to study the effect of ambient temperatures of 16 C, 22 C, and 29 C on longevity and life history parameters. We found that temperature had a significant relationship with longevity. At lower temperature, there was prolongation of the pre-reproductive and reproductive periods, but fecundity was reduced significantly due to suppression of the reproductive rate. When lifespan of short-and long-lived rotifers was compared, we found that the significant longevity difference in these rotifers was due to extension of reproductive and post-reproductive periods. The fecundity was significantly higher in longer lived rotifers due to the extension of the reproductive period, but the reproductive rate was significantly lower in these rotifers. A consistent negative relationship between rotifer longevity and the rate of reproduction was observed at all temperatures, and it was particularly pronounced in rotifers reproducing heavily at the end of the reproductive stage of their life cycle. The combined rate of living/oxidative damage theory may help explain the temperature effects that we observed.
The deoxyribonucleases (DNases) have been shown genetically to be important in the vital processes of DNA repair and recombination. The NUD1 gene, which codes for an endo-exonuclease of Saccharomyces cerevisiae, was analyzed for its role in the DNA double-strand break (DSB) repair processes. While the nud1 strain is only slightly sensitive to ionizing radiation, expression of the HO-endonuclease to introduce a DSB at the MAT locus in that strain results in cell death. Cell survival is inversely proportional to the duration of HO-endonuclease expression. Analysis of the surviving colonies from the nud1 strain indicated that many of the survivors are sterile and that the proportion of these sterile survivors increases with the time of HO-endonuclease expression. On the other hand, the surviving colonies from the isogenic NUD1 strain are mating-proficient. Interestingly, double mutants of nud1 rad52 are more resistant to ionizing irradiation than the rad52 strain and have a cell-survival fraction of 32% for rad52-1 nud1 and 9% for rad52::URA3 nud1 following prolonged HO-endonuclease expression, indicating that nud1 has a suppressor effect on the DSB-induced lethality in rad52. Polymerase chain reaction analysis showed that many of the nud1 survivors contained small alterations within theMAT locus, suggesting that the survivors arose through the process of non-homologous end-joining. These results suggest that the endo-exonuclease acts at a DSB to promote DNA repair via the homologous recombination pathway.
In our recently published study, we provided in vitro as well as in vivo data demonstrating the involvement of TRM2/RNC1 in homologous recombination based repair (HRR) of DNA double strand breaks (DSBs), in support of such claims reported earlier. To further validate its role in DNA DSB processing, our present study revealed that the trm2 single mutant displays higher sensitivity to persistent induction of specific DSBs at the MAT locus by HO-endonuclease with higher sterility rate among the survivors compared to wild type (wt) or exo1 single mutants. Intriguingly, both sensitivity and sterility rate increased dramatically in trm2exo1 double mutants lacking both endo-exonucleases with a progressively increased sterility rate in trm2exo1 double mutants with short-induction periods, reaching a very high level of sterility with persistent DSB inductions. Mutation analysis of the mating type (MAT) locus among the sterile survivors with persistent HO-induction in trm2 and exo1 single mutants as well as in trm2exo1 double mutants revealed a similar small insertions and deletions events, characteristic of non-homologous end joining (NHEJ) that might have occurred due to the lack of proper processing function in these mutants. In addition, trm2ku80 and trm2rad52 double mutants also displayed significantly higher sterility with persistent DSB induction compared to ku80 and rad52 single mutants, respectively, exhibiting a mutation spectra that shifted from base substitution (in ku80 and rad52 single mutants) to small insertions and deletions in the double mutants (in trm2ku80 and trm2rad52 mutants). These data indicate a defective processing in absence of TRM2, with a synergistic effect of TRM2, and EXO1 in such processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.