The COVID-19 pandemic presents clinicians a unique set of challenges in managing breast cancer (BC) patients. As hospital resources and staff become more limited during the COVID-19 pandemic, it becomes critically important to define which BC patients require more urgent care and which patients can wait for treatment until the pandemic is over. In this Special Communication, we use expert opinion of representatives from multiple cancer care organizations to categorize BC patients into priority levels (A, B, C) for urgency of care across all specialties. Additionally, we provide treatment recommendations for each of these patient scenarios. Priority A patients have conditions that are immediately life threatening or symptomatic requiring urgent treatment. Priority B patients have conditions that do not require immediate treatment but should start treatment before the pandemic is over. Priority C patients have conditions that can be safely deferred until the pandemic is over. The implementation of these recommendations for patient triage, which are based on the highest level available evidence, must be adapted to current availability of hospital resources and severity of the COVID-19 pandemic in each region of the country. Additionally, the risk of disease progression and worse outcomes for patients need to be weighed against the risk of patient and staff exposure to SARS CoV-2 (virus associated with the COVID-19 pandemic). Physicians should use these recommendations to prioritize care for their BC patients and adapt treatment recommendations to the local context at their hospital.
Purpose An estimated 10% of breast and ovarian cancers result from hereditary causes. Current testing guidelines for germ line susceptibility genes in patients with breast carcinoma were developed to identify carriers of BRCA1/ 2 variants and have evolved in the panel-testing era. We evaluated the capability of the National Comprehensive Cancer Network (NCCN) guidelines to identify patients with breast cancer with pathogenic variants in expanded panel testing. Methods An institutional review board–approved multicenter prospective registry was initiated with 20 community and academic sites experienced in cancer genetic testing and counseling. Eligibility criteria included patients with a previously or newly diagnosed breast cancer who had not undergone either single- or multigene testing. Consecutive patients 18 to 90 years of age were consented and underwent an 80-gene panel test. Health Insurance Portability and Accountability Act–compliant electronic case report forms collected information on patient demographics, diagnoses, phenotypes, and test results. Results More than 1,000 patients were enrolled, and data records for 959 patients were analyzed; 49.95% met NCCN criteria, and 50.05% did not. Overall, 8.65% of patients had a pathogenic/likely pathogenic (P/LP) variant. Of patients who met NCCN guidelines with test results, 9.39% had a P/LP variant. Of patients who did not meet guidelines, 7.9% had a P/LP variant. The difference in positive results between these groups was not statistically significant (Fisher’s exact test P = .4241). Conclusion Our results indicate that nearly half of patients with breast cancer with a P/LP variant with clinically actionable and/or management guidelines in development are missed by current testing guidelines. We recommend that all patients with a diagnosis of breast cancer undergo expanded panel testing.
Ten-year local recurrence and survival rates were 17% and 74% for T1 rectal cancers and 26% and 72% for T2 cancers. Median time to relapse was 1.4 years (range 0.4-7.0) for local recurrence and 2.5 years (0.8-7.5) for distant recurrence. In patients receiving radiotherapy, local recurrence was delayed (median 2.1 years vs. 1.1 years), but overall rates of local and overall recurrence and survival rates were similar to patients not receiving radiotherapy. Among 26 cancer deaths, 8 (28%) occurred more than 5 years after local excision. On multivariate analysis, no clinical or pathologic features were predictive of local recurrence. Intratumoral vascular invasion was the only significant predictor of survival. Among 34 patients who developed tumor recurrence, the pattern of first clinical recurrence was predominantly local: 50% local only, 18% local and distant, and 32% distant only. Among the 17 patients with isolated local recurrence, 14 underwent salvage resection. Actuarial survival among these surgically salvaged patients was 30% at 6 years after salvage. CONCLUSIONS The long-term risk of recurrence after local excision of T1 and T2 rectal cancers is substantial. Two thirds of patients with tumor recurrence have local failure, implicating inadequate resection in treatment failure. In this study, neither adjuvant radiotherapy nor salvage surgery was reliable in preventing or controlling local recurrence. The postoperative interval to cancer death is as long as 10 years, raising concern that cancer mortality may be higher than is generally appreciated. Additional treatment strategies are needed to improve the outcome of local excision.
EUS with FNA is useful for detection of malignancy in a pancreatic mass. The procedure appears to have a complication rate of 2%. Impact of this technique on clinical management of patients needs further evaluation.
Real-time RT-PCR is a relatively new technology that uses an online fluorescence detection system to determine gene expression levels. It has the potential to significantly improve detection of breast cancer metastasis by virtue of its exquisite sensitivity, high throughput capacity and quantitative readout system. To assess the utility of this technology in breast cancer staging, we determined the relative expression levels of 12 cancer-associated genes (mam, PIP, mamB, CEA, CK19, VEGF, erbB2, muc1, c-myc, p97, vim and Ki67) in 51 negative-control normal lymph nodes and in 17 histopathology-positive ALNs. We then performed a receiver operating characteristic (ROC) curve analysis to determine the sensitivity and specificity levels of each gene. Areas under the ROC curve indicated that the most accurate diagnostic markers were mam (99.6%), PIP (93.3%), CK19 (91.0%), mamB (87.9%), muc1 (81.5%) and CEA (79.4.0%). mam was overexpressed in 16 of 17 lymph nodes known to contain metastatic breast cancer at levels ranging from 22-to 2.8 ؋ 10 5 -fold above normal mean expression, whereas PIP was overexpressed from 30-to 2.2 ؋ 10 6 -fold above normal in 13 lymph nodes. Real-time RT-PCR analysis of pathology-negative LN from breast cancer patients revealed evidence of overexpression of PIP (6 nodes), mam (3 nodes) and CEA (1 node) in 8 of 21 nodes (38%). Our results provide evidence that mam, PIP, CK19, mamB, muc1 and CEA can be applied as a panel for detection of metastatic and occult micrometastatic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.