Many metazoan gene transcripts exhibit neuron-specific splicing patterns, but the developmental control of these splicing events is poorly understood. We show that the splicing of a large group of exons is reprogrammed during neuronal development by a switch in expression between two highly similar polypyrimidine tract-binding proteins, PTB and nPTB (neural PTB). PTB is a well-studied regulator of alternative splicing, but nPTB is a closely related paralog whose functional relationship to PTB is unknown. In the brain, nPTB protein is specifically expressed in post-mitotic neurons, whereas PTB is restricted to neuronal precursor cells (NPC), glia, and other nonneuronal cells. Interestingly, nPTB mRNA transcripts are found in NPCs and other nonneuronal cells, but in these cells nPTB protein expression is repressed. This repression is due in part to PTB-induced alternative splicing of nPTB mRNA, leading to nonsense-mediated decay (NMD). However, we find that even properly spliced mRNA fails to express nPTB protein when PTB is present, indicating contributions from additional post-transcriptional mechanisms. The PTB-controlled repression of nPTB results in a mutually exclusive pattern of expression in the brain, where the loss of PTB in maturing neurons allows the synthesis of nPTB in these cells. To examine the consequences of this switch, we used splicing-sensitive microarrays to identify different sets of exons regulated by PTB, nPTB, or both proteins. During neuronal differentiation, the splicing of these exon sets is altered as predicted from the observed changes in PTB and nPTB expression. These data show that the post-transcriptional switch from PTB to nPTB controls a widespread alternative splicing program during neuronal development.[Keywords: Alternative splicing; neuronal development; nonsense-mediated decay; polypyrimidine tract-binding proteins; splicing microarray; ultraconserved element] Supplemental material is available at http://www.genesdev.org. Alternative pre-mRNA splicing is a common mechanism for diversifying genetic output in metazoan organisms (Black 2003;Matlin et al. 2005). Alternative choices in exons and splice sites can create substantial changes in the encoded protein and its activity. Changes in splicing can also affect downstream regulatory processes such as nonsense-mediated decay (NMD), and thus direct additional levels of post-transcriptional gene regulation (Lewis et al. 2003;Lejeune and Maquat 2005;Hughes 2006). Transcripts exhibiting multiple splicing patterns are especially prevalent in the mammalian nervous system, where alternative splicing affects important processes such as axon guidance, synaptogenesis, and the regulation of membrane physiology (Black and Grabowski 2003;Lipscombe 2005;. The choice of splicing pattern within a transcript is generally controlled by RNA-binding proteins that bind to the pre-mRNA to enhance or silence particular splicing events (Black 2003;Matlin et al. 2005). Some splicing regulators are expressed in a tissue-specific manner and have been sh...
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as ''detained'' introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
A vertebrate homologue of the Fox-1 protein from C. elegans was recently shown to bind to the element GCAUG and to act as an inhibitor of alternative splicing patterns in muscle. The element UGCAUG is a splicing enhancer element found downstream of numerous neuron-specific exons. We show here that mouse Fox-1 (mFox-1) and another homologue, Fox-2, are both specifically expressed in neurons in addition to muscle and heart. The mammalian Fox genes are very complex transcription units that generate transcripts from multiple promoters and with multiple internal exons whose inclusion is regulated. These genes produce a large family of proteins with variable N and C termini and internal deletions. We show that the overexpression of both Fox-1 and Fox-2 isoforms specifically activates splicing of neuronally regulated exons. This splicing activation requires UGCAUG enhancer elements. Conversely, RNA interference-mediated knockdown of Fox protein expression inhibits splicing of UGCAUG-dependent exons. These experiments show that this large family of proteins regulates splicing in the nervous system. They do this through a splicing enhancer function, in addition to their apparent negative effects on splicing in vertebrate muscle and in worms.Alternative splicing allows the production of multiple mRNAs from a single pre-mRNA via selection of different splice sites. Regulated exons are controlled by splicing enhancer and silencer elements within the exon or in the adjacent introns. These RNA sequences bind to specific regulatory proteins that contribute to the tissue specificity of splicing. Most exons are controlled by combinations of both positive and negative regulators, and how tissue specificity of splicing is achieved is poorly understood (5, 44).The N1 exon of the c-src gene serves as a model for an exon under both positive and negative control. In nonneuronal cells, the exon is repressed by the polypyrimidine tract binding protein (PTB) that binds to intronic splicing silencer elements flanking the N1 exon (1, 7, 9). In neurons, PTB-mediated repression is absent, and the exon is activated for splicing by an intronic splicing enhancer (4, 38). The enhancer region downstream of the N1 exon is complex, with binding sites for many proteins. However, the element most critical for enhancer activity is the sequence UGCAUG, which is flanked by PTB binding elements (4,37,38). Several proteins, including the hnRNPs F and H, the neuronal homologue of PTB, and the KH-type splicing regulatory protein, assemble onto this region in splicing extracts (8,30,34,35). Immunodepletion and antibody inhibition experiments have indicated a role for these proteins in the splicing of N1 in vitro. However, none of these proteins specifically recognizes the UGCAUG element, and they do not positively affect an exon controlled by just a UG CAUG element in vivo (J. G. Underwood and D. L. Black, unpublished observations). Thus, they do not seem to mediate the function of the strongest enhancer element. Their function may be related to preventing P...
[Keywords: Locked nucleic acids; alternative splicing; miR-133; microRNAs; myogenesis; nPTB] Supplemental material is available at http://www.genesdev.org.
Summary Glioblastoma (GBM) is a devastating malignancy with few therapeutic options. We identify PRMT5 in an in vivo GBM shRNA screen and show that PRMT5 knockdown or inhibition potently suppresses in vivo GBM tumors, including patient-derived xenografts. Pathway analysis implicates splicing in cellular PRMT5 dependency, and we identify a biomarker that predicts sensitivity to PRMT5 inhibition. We find that PRMT5 deficiency primarily disrupts the removal of detained introns (DIs). This impaired DI-splicing affects proliferation genes, whose down-regulation coincides with cell cycle defects, senescence and/or apoptosis. We further show that DI-programs are evolutionarily conserved and operate during neurogenesis, suggesting that they represent a physiological regulatory mechanism. Collectively, these findings reveal a PRMT5-regulated DI splicing program as an exploitable cancer vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.