Early endosomes are cellular compartments receiving endocytosed material and sorting them for vesicular transport to late endosomes and lysosomes or for recycling to the plasma membrane. We have cloned a human cDNA encoding an evolutionarily conserved 180-kDa protein on early endosomes named EEA1 (Early Endosome Antigen1). EEA1 is associated with early endosomes since it co-localizes by immunofluorescence with the transferrin receptor and with Rab5 but not with Rab7. Immunoelectron microscopy shows that it is associated with tubulovesicular early endosomes containing internalized bovine serum albumin-gold. EEA1 is a hydrophilic peripheral membrane protein present in cytosol and membrane fractions. It partitions in the aqueous phase after Triton X-114 solubilization and is extracted from membranes by 0.3 M NaCl. It is a predominantly alpha-helical protein sharing 17-20% sequence identity with the myosins and contains a calmodulin-binding IQ motif. It is flanked by metal-binding, cysteine "finger" motifs. The COOH-terminal fingers, Cys-X2-Cys-X12-Cys-X2-Cys and Cys-X2-Cys-X16-Cys-X2-Cys, are present within a region that is strikingly homologous with Saccharomyces cerevisiae FAB1 protein required for endocytosis and with Caenorhabditis elegans ZK632. These fingers also show limited conservation with S. cerevisiae VAC1, Vps11, and Vps18p proteins implicated in vacuolar transport. We propose that EEA1 is required for vesicular transport of proteins through early endosomes and that its finger motifs are required for this activity.
Females with balanced X-autosome translocations are a clinically heterogeneous group of patients in which X breakpoint position and replication behaviour may influence phenotypic outcome. This study reviewed all cases reported by UK cytogenetics laboratories over a 15-year period (1983-1997). Publication bias was avoided by reviewing all reported cases. One hundred and four female carriers were identified, 62 of who were probands. By reason for referral, these were: multiple congenital abnormalities and/or developmental delay (MCA/DD): 26 (42%); gonadal dysfunction: 22 (35%); phenotypically normal with or without recurrent miscarriage (NRM): 9 (15%); recognized X-linked syndrome: 5 (8%). The information obtained was compared with published data and with data from the authors' own laboratories of female patients with balanced autosome-autosome translocations (n=115). We concluded that: (1) MCA/DD cases were significantly over-represented compared to previous published data (P<0.005) and were more common than in female probands with balanced autosome-autosome translocations (P<0.05). (2) MCA/DD cases showed random breakpoint distribution along the X chromosome (P>0.05). MCA/DD cases with subtelomeric breakpoints at Xp22 or Xq28 were not always associated with deviation from the expected pattern of X-inactivation where this was known. De novo cases were significantly more likely to be assigned as MCA/DD than any other category (P<0.005). (3) Gonadal dysfunction (GD) was invariably associated with a 'critical region' breakpoint, Xq13-q26, (20/22 probands). However, 7/44 (16%) of patients surveyed had breakpoints within Xq13-Xq26 and proven fertility. (4) Recognized 'X-linked syndrome' cases were significantly under-represented (P<0.001) compared to previous published data.
Holoprosencephaly (HPE) is a common developmental defect involving the brain and face in humans. Cytogenetic deletions in patients with HPE have localized one of the HPE genes (HPE2) to the chromosomal region 2p21. Here we report the molecular genetic characterization of nine HPE patients with cytogenetic deletions or translocations involving 2p21. We have determined the parental origin of the deleted chromosomes and defined the HPE2 critical region between D2S119 and D2S88/D2S391. As a first step towards cloning the HPE2 gene which is crucial for normal brain development we have constructed a YAC contig which spans the smallest region of deletion overlap. Several of these YACs could be identified which span three different 2p21 breakpoints in HPE patients. These YACs narrow the HPE2 critical region to less than 1 Mb and are now being further analyzed to identify the gene causing holoprosencephaly on chromosome 2.
Using autoantibodies from a Sjögren's syndrome patient, we have previously identified a 230-kDa peripheral membrane protein associated with the cytosolic face of the trans-Golgi (Kooy, J., Toh, B. H., Pettitt, J. M., Erlich, R. and Gleeson, P. A. (1992) J. Biol. Chem. 267, 20255-20263). Here we report the molecular cloning and sequence analysis of human p230 and the localization of its gene to chromosome 6p12 22. Partial cDNA clones, isolated from a HeLa cell cDNA library using autoantibodies, were used to obtain additional cDNAs, which together span 7695 base pairs (bp). The p230 mRNA is approximately 7.7 kilobases. Two alternatively spliced mRNAs for p230 were detected. These differed by 21- and 63-bp insertions in the 3'-sequence, resulting in differences in amino acid sequence at the carboxyl terminus. The predicted 261-kDa protein is highly hydrophilic with 17-20% homology with many proteins containing coiled-coil domains. Apart from two proline-rich regions (amino acids 1-117 and 239-270), p230 contains a very high frequency of heptad repeats, characteristic of alpha-helices that form dimeric coiled-coil structures. p230 also includes the sequence ESLALEELEL (amino acids 538-546), a motif found in the granin family of acidic proteins present in secretory granules of neuroendocrine cells. This is the first report of a cytosolic Golgi protein containing a granin motif. The structural characteristics of p230 indicate that it may play a role in vesicular transport from the trans-Golgi.
We have found rapid induction of various genes, including human globin genes, in response to hexamethylene bisacetamide (HMBA) and dimethyl sulfoxide (DMSO) in transiently transfected cells. In mouse erythroleukemia cells (MELCs), this effect is detected within 1 hr of exposure of the cells to inducer before the endogenous mouse globin genes are induced. It does not require protein synthesis and is reversed if the inducer is removed. This and other evidence suggest that the mechanism involves a change in activity of a factor intimately involved with transcription, probably as a result of post-translational modification. As such, it may represent an early triggering event in terminal differentiation, and its relevance to the expression of human globin genes in stable transfectants and to induction of the mouse globin genes is discussed. Other cell lines (K562 and NSO) also show this response, which may therefore involve a ubiquitous mechanism. We also found that HMBA depresses the expression of endogenous globin genes in K562, the opposite of this differentiation inducer's effect on MELC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.