Tranexamic acid, a synthetic derivative of the amino acid lysine, is an antifibrinolytic agent that acts by binding to plasminogen and blocking the interaction of plasmin(ogen) with fibrin, thereby preventing dissolution of the fibrin clot. Tranexamic acid (Transamin®) is indicated in Japan for use in certain conditions with abnormal bleeding or bleeding tendencies in which local or systemic hyperfibrinolysis is considered to be involved. This article reviews the efficacy and tolerability of tranexamic acid in conditions amenable to antifibrinolytic therapy and briefly overviews the pharmacological properties of the drug. In large, randomized controlled trials, tranexamic acid generally significantly reduced perioperative blood loss compared with placebo in a variety of surgical procedures, including cardiac surgery with or without cardiopulmonary bypass, total hip and knee replacement and prostatectomy. In many instances, tranexamic acid also reduced transfusion requirements associated with surgery. It also reduced blood loss in gynaecological bleeding disorders, such as heavy menstrual bleeding, postpartum haemorrhage and bleeding irregularities caused by contraceptive implants. Tranexamic acid significantly reduced all-cause mortality and death due to bleeding in trauma patients with significant bleeding, particularly when administered early after injury. It was also effective in traumatic hyphaema, gastrointestinal bleeding and hereditary angioneurotic oedema. While it reduces rebleeding in subarachnoid haemorrhage, it may increase ischaemic complications. Pharmacoeconomic analyses predicted that tranexamic acid use in surgery and trauma would be very cost effective and potentially life saving. In direct comparisons with other marketed agents, tranexamic acid was at least as effective as ε-aminocaproic acid and more effective than desmopressin in surgical procedures. It was more effective than desmopressin, etamsylate, flurbiprofen, mefenamic acid and norethisterone, but less effective than the levonorgestrel-releasing intra-uterine device in heavy menstrual bleeding and was as effective as prednisolone in traumatic hyphaema. Tranexamic acid was generally well tolerated. Most adverse events in clinical trials were of mild or moderate severity; severe or serious events were rare. Therefore, while high-quality published evidence is limited for some approved indications, tranexamic acid is an effective and well tolerated antifibrinolytic agent.
Trametinib is an orally bioavailable mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor with antineoplastic activity. The compound specifically binds to MEK1 and MEK2, resulting in inhibition of growth factor-mediated cell signalling and cellular proliferation in various cancers. Originally developed by Japan Tobacco, GlaxoSmithKline has licensed exclusive worldwide rights to the compound and conducted development in a number of different cancer types. Trametinib, as a monotherapy, has been approved in the US for the treatment of unresectable or metastatic malignant melanoma with BRAF V600E or V600K mutations, as detected by an FDA-approved test. The compound, as a monotherapy, has also been submitted for regulatory review in the EU for BRAF mutation-positive malignant melanoma, and is in phase III development in Europe, Argentina, Canada and Oceania. Phase II development is underway for pancreatic cancer, non-small cell lung cancer and relapsed or refractory leukaemias. GlaxoSmithKline is also developing trametinib for use in combination with dabrafenib in BRAF V600 mutation-positive metastatic cutaneous melanoma; the combination is at the preregistration stage in the EU and a phase III clinical programme is underway worldwide. Phase II development for this combination is also underway in colorectal cancer. Several phase I trials have also been initiated to evaluate trametinib in combination with other drugs for the treatment of various solid tumours and haematological malignancies. A paediatric oral solution formulation has been assessed against the oral tablet formulation in a phase I trial. This article summarizes the milestones in the development of trametinib leading to this first approval for unresectable or metastatic BRAF mutation-positive malignant melanoma.
Celecoxib (Celebrex®) was the first cyclo-oxygenase (COX)-2 selective inhibitor (coxib) to be introduced into clinical practice. Coxibs were developed to provide anti-inflammatory/analgesic activity similar to that of nonselective NSAIDs, but without their upper gastrointestinal (GI) toxicity, which is thought to result largely from COX-1 inhibition. Celecoxib is indicated in the EU for the symptomatic treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis in adults. This article reviews the clinical efficacy and tolerability of celecoxib in these EU-approved indications, as well as overviewing its pharmacological properties. In randomized controlled trials, celecoxib, at the recommended dosages of 200 or 400 mg/day, was significantly more effective than placebo, at least as effective as or more effective than paracetamol (acetaminophen) and as effective as nonselective NSAIDs and the coxibs etoricoxib and lumiracoxib for the symptomatic treatment of patients with active osteoarthritis, rheumatoid arthritis or ankylosing spondylitis. Celecoxib was generally well tolerated, with mild to moderate upper GI complaints being the most common body system adverse events. In meta-analyses and large safety studies, the incidence of upper GI ulcer complications with recommended dosages of celecoxib was significantly lower than that with nonselective NSAIDs and similar to that with paracetamol and other coxibs. However, concomitant administration of celecoxib with low-dose cardioprotective aspirin often appeared to negate the GI-sparing advantages of celecoxib over NSAIDs. Although one polyp prevention trial noted a dose-related increase in cardiovascular risk with celecoxib 400 and 800 mg/day, other trials have not found any significant difference in cardiovascular risk between celecoxib and placebo or nonselective NSAIDs. Meta-analyses and database-derived analyses are inconsistent regarding cardiovascular risk. At recommended dosages, the risks of increased thrombotic cardiovascular events, or renovascular, hepatic or hypersensitivity reactions with celecoxib would appear to be small and similar to those with NSAIDs. Celecoxib would appear to be a useful option for therapy in patients at high risk for NSAID-induced GI toxicity, or in those responding suboptimally to or intolerant of NSAIDs. To minimize any risk, particularly the cardiovascular risk, celecoxib, like all coxibs and NSAIDs, should be used at the lowest effective dosage for the shortest possible duration after a careful evaluation of the GI, cardiovascular and renal risks of the individual patient.
Exenatide, administered subcutaneously twice daily (Byetta(®)), is a synthetic version of the natural peptide exendin-4, which is a glucagon-like peptide-1 (GLP-1) receptor agonist (incretin mimetic). Exenatide binds to the GLP-1 receptor with the same affinity as GLP-1, but has a much longer half-life, since it is not degraded by the enzyme dipeptidyl peptidase-4. Exenatide twice daily enhances glucose-dependent insulin secretion, suppresses inappropriately elevated glucagon secretion, slows gastric emptying and reduces caloric intake. In well-designed clinical trials, adjunctive subcutaneous exenatide 5 or 10 μg twice daily for 16-52 weeks significantly and dose-dependently improved glycaemic control and reduced mean body weight compared with placebo in patients with type 2 diabetes inadequately controlled with oral antihyperglycaemic drugs (OADs) and/or basal insulin. The improvements in glycaemic control and reductions in body weight were stably maintained during long-term therapy (up to 3.5 years). The efficacy of adjunctive exenatide twice daily was generally similar to that of basal, prandial or biphasic insulin, sulfonylureas, rosiglitazone and lixisenatide, and less than that of liraglutide, taspoglutide or exenatide once weekly with respect to reductions in glycated haemoglobin. Exenatide twice daily was generally well tolerated; mild to moderate nausea and vomiting, which decreased with time on therapy, were the most common adverse events. In patients not receiving concomitant sulfonylureas or insulin, the incidence of hypoglycaemia was low; when it did occur, it was generally mild in severity. Thus, adjunctive exenatide twice daily is a valuable option in the treatment of type 2 diabetes inadequately controlled with OADs and/or basal insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.