SUMMARY
Kernel smoothing is studied in partial linear models, i.e. semiparametric models of the form yi=ξi‱β+f(ti)+εi(1≤i≤n), where the ξi are fixed known p vectors, β is an unknown vector parameter and f is a smooth but unknown function. Two methods of estimating β and f are considered, one related to partial smoothing splines and the other motivated by partial residual analysis. Under suitable assumptions, the asymptotic bias and variance are obtained for both methods, and it is shown that estimating β by partial residuals results in improved bias with no asymptotic loss in variance. Application to analysis of covariance is made, and several examples are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.