The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.
Endomembranes of eukaryotic cells are dynamic structures that are in continuous communication through the activity of specialized cellular machineries, such as the coat protein complex II (COPII), which mediates cargo export from the endoplasmic reticulum (ER). COPII consists of the Sar1 GTPase, Sec23 and Sec24 (Sec23/24), where Sec23 is a Sar1-specific GTPase-activating protein and Sec24 functions in cargo selection, and Sec13 and Sec31 (Sec13/31), which has a structural role. Whereas recent results have shown that Sec23/24 and Sec13/31 can self-assemble to form COPII cage-like particles, we now show that Sec13/31 can self-assemble to form minimal cages in the absence of Sec23/24. We present a three-dimensional reconstruction of these Sec13/31 cages at 30 A resolution using cryo-electron microscopy and single particle analysis. These results reveal a novel cuboctahedron geometry with the potential to form a flexible lattice and to generate a diverse range of containers. Our data are consistent with a model for COPII coat complex assembly in which Sec23/24 has a non-structural role as a multivalent ligand localizing the self-assembly of Sec13/31 to form a cage lattice driving ER cargo export.
SUMMARY
Using cryo-electron microscopy, we have solved the structure of a novel icosidodecahedral COPII coat involved in cargo export from the endoplasmic reticulum (ER) co-assembled from purified cargo adaptor Sec23–24 and Sec13–31 lattice forming complexes. The coat structure shows a tetrameric assembly of the Sec23–24 adaptor layer that is positioned beneath the vertices and edges of the Sec13–31 lattice. Fitting the known crystal structures of the COPII proteins into the density map reveals a flexible hinge region stemming from interactions between WD40 β-propeller domains present in Sec13 and Sec31 at the vertices. The structure shows that the hinge region can direct geometric cage expansion to accommodate a wide range of bulky cargo including procollagen and chylomicrons that are sensitive to adaptor function in inherited disease. The COPII coat structure leads us to propose a new mechanism by which cargo drives cage assembly and membrane curvature for budding from the ER.
We propose a general model for the role of the Hsp90 ATPase cycle in proteostasis in which Aha1 regulates the dwell time of Hsp90 with client by integrating chaperone function and client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions.
Communication between compartments of the exocytic and endocytic pathways in eukaryotic cells involves transport carriers - vesicles and tubules - that mediate the vectorial movement of cargo. Recent studies of transport-carrier formation in the early secretory pathway have provided new insights into the mechanisms of cargo selection by coat protein complex-II (COPII) adaptor proteins, the construction of cage-protein scaffolds and fission. These studies are beginning to produce a unifying molecular and structural model of coat function in the formation and fission of vesicles and tubules in endomembrane traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.