Memristive-based electro-optical neuromorphic hardware takes advantage of both the high-density of electronic circuits and the high bandwidth of their photonic counterparts, thus showing potential for low-power artificial intelligence applications. In this Perspective paper, we introduce a class of electro-optical memristors that can emulate the key properties of synapses and neurons, which are essential features for the realization of electro-optical neuromorphic functionalities. We then describe the challenges associated with existing technologies and finally give our viewpoint on possible developments toward an energy-efficient neuromorphic platform.
The typically nonlinear and asymmetric response of synaptic memristors to positive and negative electrical pulses makes the realization of accurate deep neural networks very challenging. Here, we integrate a two-terminal valence change memory (VCM) into a photonic/plasmonic circuit and show that the switching properties of this memristor become more gradual and symmetric under light irradiation. The added optical input acts on the VCM as a third, independent modulation channel. It locally heats the active area of the device, which enhances the generation of oxygen vacancies and broadens the resulting nanoscale conductive filaments. The measured conductance modulation of the VCM is then inserted into a neural network simulator. Using the MNIST data set of handwritten digits as an application, a light-enhanced recognition accuracy of 93.53% is demonstrated, similar to ideally performing memristors (94.86%) and much higher than those without light (67.37%). Notably, the optical signal does not increase the overall energy consumption by more than 3.2%. Finally, an approach to scale up our electro-optical technology is proposed, which could allow high-density, energy-efficient neuromorphic computing chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.