Rapid diagnosis and treatment of infectious meningitis and encephalitis are critical to minimize morbidity and mortality. Comprehensive testing of cerebrospinal fluid (CSF) often includes Gram stain, culture, antigen detection, and molecular methods, paired with chemical and cellular analyses. These methods may lack sensitivity or specificity, can take several days, and require significant volume for complete analysis. The FilmArray Meningitis/Encephalitis (ME) Panel is a multiplexed in vitro diagnostic test for the simultaneous, rapid (ϳ1-h) detection of 14 pathogens directly from CSF specimens: Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus agalactiae, cytomegalovirus, enterovirus, herpes simplex virus 1 and 2, human herpesvirus 6, human parechovirus, varicella-zoster virus, and Cryptococcus neoformans/Cryptococcus gattii. We describe a multicenter evaluation of 1,560 prospectively collected CSF specimens with performance compared to culture (bacterial analytes) and PCR (all other analytes). The FilmArray ME Panel demonstrated a sensitivity or positive percentage of agreement of 100% for 9 of 14 analytes. Enterovirus and human herpesvirus type 6 had agreements of 95.7% and 85.7%, and L. monocytogenes and N. meningitidis were not observed in the study. For S. agalactiae, there was a single false-positive and false-negative result each, for a sensitivity and specificity of 0 and 99.9%, respectively. The specificity or negative percentage of agreement was 99.2% or greater for all other analytes. The FilmArray ME Panel is a sensitive and specific test to aid in diagnosis of ME. With use of this comprehensive and rapid test, improved patient outcomes and antimicrobial stewardship are anticipated.
In this retrospective cohort, nephrotoxicity (as defined by RIFLE criteria) occurred among 43% of treated patients in a dose-dependent manner. Higher colistin doses, similar to those commonly used in the United States, led to a relatively high rate of nephrotoxicity. These data raise important questions regarding the safe use of colistin in the treatment of multidrug-resistant pathogens.
Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth.
Carbapenem-resistant Klebsiella pneumoniae has spread worldwide and throughout the United States. Colistin is used extensively to treat infections with this organism. We describe a cluster of colistin-resistant, carbapenem-resistant K. pneumoniae infection cases involving three institutions in Detroit, MI. A cluster of five cases of colistin-resistant, carbapenem-resistant K. pneumoniae was identified at Detroit Medical Center (DMC) from 27 July to 22 August 2009. Epidemiologic data were collected, and transmission opportunities were analyzed. Isolates were genotyped by using pulsed-field gel electrophoresis and repetitive extragenic palindromic PCR. Data regarding the use of colistin were obtained from pharmacy records. The index case of colistin-resistant, carbapenem-resistant K. pneumoniae was followed 20 days later by four additional cases occurring in a 6-day interval. All of the patients, at some point, had stayed at one particular institution. The mean number of opportunities for transmission between patients was 2.3 ؎ 0.5, and each patient had at least one opportunity for transmission with one of the other patients. Compared to 60 colistin-susceptible, carbapenem-resistant K. pneumoniae controls isolated in the previous year at DMC, case patients were significantly older (P ؍ 0.05) and the carbapenem-resistant K. pneumoniae organisms isolated from them displayed much higher MICs to imipenem (P < 0.001). Colistin use was not enhanced in the months preceding the outbreak. Genotyping revealed two closely related clones. This report of a colistin-resistant, carbapenem-resistant K. pneumoniae outbreak is strongly linked to patient-to-patient transmission. Controlling the spread and novel emergence of bacteria with this phenotype is of paramount importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.