This paper presents recent developments in the Artequakt project which seeks to automatically extract knowledge about artists from the Web, populate a knowledge base, and use it to generate personalized narrative biographies. An overview of the system architecture is presented and the three key components of that architecture are explained in detail, namely knowledge extraction, information management and biography construction. An example experiment is detailed and further challenges are outlined.
a b s t r a c tTerrestrial mobile laser scanning systems provide rapid and cost effective 3D point cloud data which can be used for extracting features such as the road edge along a route corridor. This information can assist road authorities in carrying out safety risk assessment studies along road networks. The knowledge of the road edge is also a prerequisite for the automatic estimation of most other road features. In this paper, we present an algorithm which has been developed for extracting left and right road edges from terrestrial mobile LiDAR data. The algorithm is based on a novel combination of two modified versions of the parametric active contour or snake model. The parameters involved in the algorithm are selected empirically and are fixed for all the road sections. We have developed a novel way of initialising the snake model based on the navigation information obtained from the mobile mapping vehicle. We tested our algorithm on different types of road sections representing rural, urban and national primary road sections. The successful extraction of road edges from these multiple road section environments validates our algorithm. These findings and knowledge provide valuable insights as well as a prototype road edge extraction toolset, for both national road authorities and survey companies. Ó
This paper attempts to review and characterise the problem of the semantic gap in image retrieval and the attempts being made to bridge it. In particular, we draw from our own experience in user queries, automatic annotation and ontological techniques. The first section of the paper describes a characterisation of the semantic gap as a hierarchy between the raw media and full semantic understanding of the media's content. The second section discusses real users' queries with respect to the semantic gap. The final sections of the paper describe our own experience in attempting to bridge the semantic gap. In particular we discuss our work on auto-annotation and semantic-space models of image retrieval in order to bridge the gap from the bottom up, and the use of ontologies, which capture more semantics than keyword object labels alone, as a technique for bridging the gap from the top down.
a b s t r a c tRoad markings are used to provide guidance and instruction to road users for safe and comfortable driving. Enabling rapid, cost-effective and comprehensive approaches to the maintenance of route networks can be greatly improved with detailed information about location, dimension and condition of road markings. Mobile Laser Scanning (MLS) systems provide new opportunities in terms of collecting and processing this information. Laser scanning systems enable multiple attributes of the illuminated target to be recorded including intensity data. The recorded intensity data can be used to distinguish the road markings from other road surface elements due to their higher retro-reflective property. In this paper, we present an automated algorithm for extracting road markings from MLS data. We describe a robust and automated way of applying a range dependent thresholding function to the intensity values to extract road markings. We make novel use of binary morphological operations and generic knowledge of the dimensions of road markings to complete their shapes and remove other road surface elements introduced through the use of thresholding. We present a detailed analysis of the most applicable values required for the input parameters involved in our algorithm. We tested our algorithm on different road sections consisting of multiple distinct types of road markings. The successful extraction of these road markings demonstrates the effectiveness of our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.