Pattern counting in graphs is fundamental to network science tasks, and there are many scalable methods for approximating counts of small patterns, often called motifs, in large graphs. However, modern graph datasets now contain richer structure, and incorporating temporal information in particular has become a critical part of network analysis. Temporal motifs, which are generalizations of small subgraph patterns that incorporate temporal ordering on edges, are an emerging part of the network analysis toolbox. However, there are no algorithms for fast estimation of temporal motifs counts; moreover, we show that even counting simple temporal star motifs is NP-complete. Thus, there is a need for fast and approximate algorithms. Here, we present the first frequency estimation algorithms for counting temporal motifs. More specifically, we develop a sampling framework that sits as a layer on top of existing exact counting algorithms and enables fast and accurate memory-efficient estimates of temporal motif counts. Our results show that we can achieve one to two orders of magnitude speedups with minimal and controllable loss in accuracy on a number of datasets.
MapReduce has become the de facto standard model for designing distributed algorithms to process big data on a cluster. There has been considerable research on designing efficient MapReduce algorithms for clustering, graph optimization, and submodular optimization problems. We develop new techniques for designing greedy and local ratio algorithms in this setting. Our randomized local ratio technique gives 2-approximations for weighted vertex cover and weighted matching, and an f -approximation for weighted set cover, all in a constant number of MapReduce rounds. Our randomized greedy technique gives algorithms for maximal independent set, maximal clique, and a (1+ε) ln ∆-approximation for weighted set cover. We also give greedy algorithms for vertex colouring with (1 + o(1))∆ colours and edge colouring with (1 + o(1))∆ colours.
SYM-ILDL is a numerical software package that computes incomplete LDL
T
(ILDL) factorizations of symmetric indefinite and real skew-symmetric matrices. The core of the algorithm is a Crout variant of incomplete LU (ILU), originally introduced and implemented for symmetric matrices by Li and Saad [2005]. Our code is economical in terms of storage, and it deals with real skew-symmetric matrices as well as symmetric ones. The package is written in C++ and is templated, is open source, and includes a M
atlab
™
interface. The code includes built-in RCM and AMD reordering, two equilibration strategies, threshold Bunch-Kaufman pivoting, and rook pivoting, as well as a wrapper to MC64, a popular matching-based equilibration and reordering algorithm. We also include two built-in iterative solvers: SQMR, preconditioned with ILDL, and MINRES, preconditioned with a symmetric positive definite preconditioner based on the ILDL factorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.