Defect-occurrence projection is necessary for the development of methods to mitigate the risks of software defect occurrences. In this paper, we examine user-reported software defectoccurrence patterns across twenty-two releases of four widelydeployed, business-critical, production, software systems: a commercial operating system, a commercial middleware system, an open source operating system (OpenBSD), and an open source middleware system (Tomcat). We evaluate the suitability of common defect-occurrence models by first assessing the match between characteristics of widely-deployed production software systems and model structures. We then evaluate how well the models fit real world data. We find that the Weibull model is flexible enough to capture defect-occurrence behavior across a wide range of systems. It provides the best model fit in 16 out of the 22 releases. We then evaluate the ability of the moving averages and the exponential smoothing methods to extrapolate Weibull model parameters using fitted model parameters from historical releases. Our results show that in 50% of our forecasting experiments, these two naïve parameterextrapolation methods produce projections that are worse than the projection from using the same model parameters as the most recent release. These findings establish the need for further research on parameter-extrapolation methods that take into account variations in characteristics of widely-deployed, production, software systems across multiple releases.
Quantitatively-based risk management can reduce the risks associated with field defects for both software producers and software consumers. In this paper, we report experiences and results from initiating risk-management activities at a large systems development organization. The initiated activities aim to improve product testing (system/integration testing), to improve maintenance resource allocation, and to plan for future process improvements. The experiences we report address practical issues not commonly addressed in research studies: how to select an appropriate modeling method for product testing prioritization and process improvement planning, how to evaluate accuracy of predictions across multiple releases in time, and how to conduct analysis with incomplete information. In addition, we report initial empirical results for two systems with 13 and 15 releases. We present prioritization of configurations to guide product testing, field defect predictions within the first year of deployment to aid maintenance resource allocation, and important predictors across both systems to guide process improvement planning. Our results and experiences are steps towards quantitatively-based risk management.
Defect-occurrence projection is necessary for the development of methods to mitigate the risks of software defect occurrences. In this paper, we examine user-reported software defectoccurrence patterns across twenty-two releases of four widelydeployed, business-critical, production, software systems: a commercial operating system, a commercial middleware system, an open source operating system (OpenBSD), and an open source middleware system (Tomcat). We evaluate the suitability of common defect-occurrence models by first assessing the match between characteristics of widely-deployed production software systems and model structures. We then evaluate how well the models fit real world data. We find that the Weibull model is flexible enough to capture defect-occurrence behavior across a wide range of systems. It provides the best model fit in 16 out of the 22 releases. We then evaluate the ability of the moving averages and the exponential smoothing methods to extrapolate Weibull model parameters using fitted model parameters from historical releases. Our results show that in 50% of our forecasting experiments, these two naïve parameterextrapolation methods produce projections that are worse than the projection from using the same model parameters as the most recent release. These findings establish the need for further research on parameter-extrapolation methods that take into account variations in characteristics of widely-deployed, production, software systems across multiple releases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.