Telomere-repeat encoding RNA (referred to as TERRA) has been identified as a potential component of yeast and mammalian telomeres. We show here that TERRA RNA interacts with several telomere-associated proteins, including telomere repeat factors 1 (TRF1) and 2 (TRF2), subunits of the Origin Recognition Complex (ORC), heterochromatin protein 1 (HP1), histone H3 trimethyl K9 (H3 K9me3), and members of the DNA damage sensing pathway. siRNA depletion of TERRA caused an increase in telomere dysfunction-induced foci (TIF), aberrations in metaphase telomeres, and a loss of histone H3 K9me3 and ORC at telomere repeat DNA. Previous studies found that TRF2 amino-terminal GAR domain recruited ORC to telomeres. We now show that TERRA RNA can interact directly with the TRF2 GAR and ORC1 to form a stable ternary complex. We conclude that TERRA facilitates TRF2 interaction with ORC and plays a central role in telomere structural maintenance and heterochromatin formation.
Summary Polymorphonuclear myeloid derived suppressor cells (PMN-MDSC) are pathologically activated neutrophils that are critically important for the regulation of immune responses in cancer. They contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite the recent advances in understanding of the PMN-MDSC biology, the mechanisms responsible for pathological activation of neutrophils are not well defined, which limits selective targeting of these cells. Here, we report that mouse and human PMN-MDSC exclusively up-regulate fatty acid transporter protein 2 (FATP2). Over-expression of FATP2 in PMN-MDSC was controlled by GM-CSF, through the activation of STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSC. The main mechanism of FATP2 mediated suppressive activity involved uptake of arachidonic acid (AA) and synthesis of prostaglandin E2 (PGE2). The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSC and substantially delayed tumor progression. In combination with check-point inhibitors it blocked tumor progression in mice. Thus, FATP2 mediates acquisition of immune suppressive activity by PMN-MDSC and represents a new target to selectively inhibit the functions of PMN-MDSC and improve the effect of cancer therapy.
Transcription factor IID (TFIID) binds to TATA boxes, nucleating the assembly of initiation complexes containing several general transcription factors and RNA polymerase II. Recently, TFIID was shown to be a multisubunit complex containing a TATA box-binding polypeptide (TBP) and several tightly associated polypeptides (TAFs), which are required for transcriptional stimulation by activator proteins. Here, we report the development of a human cell line expressing an epitope-tagged TBP and the immunopurification of a native, high-molecular-weight form of TFIID that supports transcriptional stimulation by several different classes of activation domains. Recovery of basal and activated TFIID transcriptional sFecific activity was close to -100%. Electrophoretic mobility-shift analysis demonstrated a single major DNA-protein complex. This holo-TFIID contains TAFs of -250, 125, 95, 78, and 50 kD and sediments at 17S. Holo-TFIID produced an extended footprint over the adenovirus major late promoter TATA box and initiator sequence and supported transcriptional activation from a promoter lacking a TATA box. These results lead us to hypothesize that a single multisubunit TFIID protein supports transcriptional stimulation by diverse activation domains and from a TATA-Iess promoter.
Cohesins, which mediate sister chromatin cohesion, and CTCF, which functions at chromatin boundaries, play key roles in the structural and functional organization of chromosomes. We examined the binding of these two factors on the Kaposi's sarcoma-associated herpesvirus (KSHV) episome during latent infection and found a striking colocalization within the control region of the major latency transcript responsible for expressing LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71), and vmiRNAs. Deletion of the CTCF-binding site from the viral genome disrupted cohesin binding, and crippled colony formation in 293 cells. Clonal instability correlated with elevated expression of lytic cycle gene products, notably the neighbouring promoter for K14 and vGPCR (ORF74). siRNA depletion of RAD21 from latently infected cells caused an increase in K14 and ORF74, and lytic inducers caused a rapid dissociation of RAD21 from the viral genome. RAD21 and SMC1 also associate with the cellular CTCF sites at mammalian c-myc promoter and H19/Igf2 imprinting control region. We conclude that cohesin subunits associate with viral and cellular CTCF sites involved in complex gene regulation and chromatin organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.