Phenylalanine ammonia-lyase has been shown to catalyze the elimination of ammonia from the slow alternate substrate 3-(1,4-cyclohexadienyl)alanine by an E1 cb mechanism with a carbanion intermediate. This conclusion resulted from comparison of 15N isotope effects with deuterated (0.9921) and unlabeled substrates (1.0047), and a deuterium isotope effect of 2.0 from dideuteration at C-3, with the equations for concerted, carbanion, and carbonium ion mechanisms. The 15N equilibrium isotope effect on the addition of the substrate to the dehydroalanine prosthetic group on the enzyme is 0.979, while the kinetic 15N isotope effect on the reverse of this step is 1.03-1.04 and the intrinsic deuterium isotope effect on proton removal is in the range 4-6. Isotope effects with phenylalanine itself are small (15N ones of 1.0021 and 1.0010 when unlabeled or 3-dideuterated and a deuterium isotope effect of 1.15) but are consistent with the same mechanism with drastically increased commitments, including a sizable external one (i.e., phenylalanine is sticky). pH profiles show that the amino group of the substrate must be unprotonated to react but that a group on the enzyme with a pK of 9 must be protonated, possibly to catalyze addition of the substrate to dehydroalanine. Incorrectly protonated enzyme-substrate complexes do not form. Equilibrium 15N isotope effects are 1.016 for the deprotonation of phenylalanine or its cyclohexadienyl analogue, 1.0192 for deprotonation of NH4+, 1.0163 for the conversion of the monoanion of phenylalanine to NH3, and 1.0138 for the conversion of the monoanion of aspartate to NH4+.(ABSTRACT TRUNCATED AT 250 WORDS)
The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.
A number of compounds that appear to be analogues of the aci form of the normal carbanion intermediate are good inhibitors of yeast enolase. These include (3-hydroxy-2-nitropropyl)phosphonate (I), the ionized (pK = 8.1) nitronate form of which in the presence of 5 mM Mg2+ has a Ki of 6 nM, (nitroethyl)phosphonate (III) (pK = 8.5; Ki of the nitronate in the presence of 5 mM Mg2+ = 1 microM), phosphonoacetohydroxamate (IV) (pK = 10.2; Ki with saturating Mg2+ for the ionized form = 15 pM), and (phosphonoethyl)nitrolate (VII) (Ki at 1 mM Mg2+ = 14 nM). The oxime of phosphonopyruvate (VI) has a pH-independent Ki of 75 microM. I, IV, VI, and VII are slow binding inhibitors. All of these compounds are trigonal at the position analogous to C-2 of 2-phosphonoglycerate and contain a phosphono group, but a negatively charged metal ligand at the position isosteric with the hydroxyl attached to C-3 of 2-phosphoglycerate (as in IV) appears to contribute more to binding than a nitro group isosteric with the carboxyl of 2-phosphoglycerate (I and III). These data support the carbanion mechanism for enolase and suggest that the 3-hydroxyl of 2-phosphoglycerate is directly coordinated to Mg2+ prior to being eliminated to give phosphoenolpyruvate.
We have determined 15N isotope effects and solvent deuterium isotope effects for adenosine deaminase using both adenosine and the slow alternate substrate 7,8-dihydro-8-oxoadenosine. With adenosine, 15N isotope effects were 1.0040 in H2O and 1.0023 in D2O, and the solvent deuterium isotope effect was 0.77. With 7,8-dihydro-8-oxoadenosine, 15N isotope effects were 1.015 in H2O and 1.0131 in D2O, and the solvent deuterium isotope effect was 0.45. The inverse solvent deuterium isotope effect shows that the fractionation factor of a proton, which is originally less than 0.6, increases to near unity during formation of the tetrahedral intermediate from which ammonia is released. Proton inventories for 1/V and 1/(V/K) vs percent D2O are linear, indicating that a single proton has its fractionation factor altered during the reaction. We conclude that a sulfhydryl group on the enzyme donates its proton to oxygen or nitrogen during this step. pH profiles with 7,8-dihydro-8-oxoadenosine suggest that the pK of this sulfhydryl group is 8.45. The inhibition of adenosine deaminase by cadmium also shows a pK of approximately 9 from the pKi profile. Quantitative analysis of the isotope effects suggests an intrinsic 15N isotope effect for the release of ammonia from the tetrahedral intermediate of approximately 1.03 for both substrates; however, the partition ratio of this intermediate for release of ammonia as opposed to back-reaction is 14 times greater for adenosine (1.4) than for 7,8-dihydro-8-oxoadenosine (0.1).(ABSTRACT TRUNCATED AT 250 WORDS)
Benzoylformate decarboxylase (benzoylformate carboxy-lyase, BFD; EC 4.1.1.7) from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.