Biostatistics and machine learning have been the cornerstone of a variety of recent developments in medicine. In order to gather large enough datasets, it is often necessary to set up multi-centric studies; yet, centralization of measurements can be difficult, either for practical, legal or ethical reasons. As an alternative, federated learning enables leveraging multiple centers’ data without actually collating them. While existing works generally require a center to act as a leader and coordinate computations, we propose a fully decentralized framework where each center plays the same role. In this paper, we apply this framework to logistic regression, including confidence intervals computation. We test our algorithm on two distinct clinical datasets split among different centers, and show that it matches results from the centralized framework. In addition, we discuss possible privacy leaks and potential protection mechanisms, paving the way towards further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.