We introduce a general notion of transport cost that encompasses many costs used in the literature (including the classical one and weak transport costs introduced by Talagrand and Marton in the 90's), and prove a Kantorovich type duality theorem. As a by-product we obtain various applications in different directions: we give a short proof of a result by Strassen on the existence of a martingale with given marginals, we characterize the associated transport-entropy inequalities together with the log-Sobolev inequality restricted to convex/concave functions. Some explicit examples of discrete measures satisfying weak transport-entropy inequalities are also given. December 25, 2015. 1991 Mathematics Subject Classification. 60E15, 32F32 and 26D10.
Date:
We prove concentration inequalities for some classes of Markov chains and -mixing processes, with constants independent of the size of the sample, that extend the inequalities for product measures of Talagrand. The method is based on information inequalities put forward by Marton in case of contracting Markov chains. Using a simple duality argument on entropy, our results also include the family of logarithmic Sobolev inequalities for convex functions. Applications to bounds on supremum of dependent empirical processes complete this work.
We study an optimal weak transport cost related to the notion of convex order between probability measures. On the real line, we show that this weak transport cost is reached for a coupling that does not depend on the underlying cost function. As an application, we give a necessary and sufficient condition for weak transport-entropy inequalities (related to concentration of convex/concave functions) to hold on the line. In particular, we obtain a weak transport-entropy form of the convex Poincaré inequality in dimension one.Date: August 3, 2018. 1991 Mathematics Subject Classification. 60E15, 32F32 and 26D10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.