Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm.
Previous studies have shown that orphanin FQ/nociceptin (OFQ/N), the endogenous ligand of the opioid receptor-like (ORL-1) receptor, reduces the rewarding and addictive properties of cocaine and other drugs of abuse. In the present study, using the conditioned place preference (CPP) paradigm, as an animal model of drug reward, we assessed whether the rewarding action of acute cocaine would be altered in mice lacking the ORL-1 receptor or in wild type mice treated with J-113397, an ORL-1 receptor antagonist, relative to their saline-treated controls. On day 1, mice were tested for their baseline place preferences, in which each mouse was placed in the neutral chamber of a threechambered CPP apparatus, allowed to freely explore all the chambers and the amount of time that a mouse spent in each conditioning chamber was recorded for 15 min. On days 2-3, mice received once daily alternate-day saline/cocaine (15 or 30 mg/kg) conditioning for 30 min. On day 4, mice were tested for their postconditioning preferences, as described for day 1. In a subsequent study, the effect of J-113397 (3 mg/kg) on the rewarding action of acute cocaine (15 mg/kg) was also examined in wild type mice. Our results showed that mice lacking the ORL-1 receptor expressed greater CPP than their wild type littermates. Furthermore, the rewarding action of cocaine was enhanced in the presence of J-113397 in wild type mice. Together, the present results suggest that the endogenous OFQ/N/ORL-1 receptor system is involved in the rewarding action of acute cocaine.
We have previously shown that orphanin FQ (also known as nociceptin; OFQ/N) attenuates the motor stimulatory effect of cocaine and blocks locomotor sensitization induced by cocaine. Furthermore, we have shown that cocaine treatment altered the level of endogenous OFQ/N, raising the possibility that endogenous OFQ/N and its receptor (NOP) may be crucial in these actions of cocaine. Accordingly, in the present study, we sought to determine the role of NOP receptors in psychomotor stimulation and locomotor sensitization induced by cocaine or amphetamine. Mice lacking the NOP receptor and their wild-type littermates were habituated to motor activity chambers for 1 h, injected with cocaine (0, 15 or 30 mg/kg) or amphetamine (0, 1 or 3 mg/kg), and motor activity was recorded for 1 h. For sensitization induced by these drugs, mice were treated with saline or the highest dose of each drug once daily for three consecutive days and tested on day 8. On this day, mice were habituated to the chambers for 1 h, then received a challenge dose of cocaine (15 mg/kg) or amphetamine (1 mg/kg), and motor activity was recorded for 1 h. Cocaine and amphetamine each induced hyperlocomotion but the extent of this response was not different between NOP receptor null mice and their controls. Sensitization developed to the motor stimulatory action of each drug, but the magnitude of cocaine-induced sensitization was only higher in null mice compared to their controls. Together, the present results suggest that the endogenous OFQ/N/NOP receptor system may modulate the development of cocaine-induced locomotor sensitization.
The aim of this study was to determine the role of the endogenous dynorphin/kappa opioid receptor (DYN/KOP) system in ethanol-induced state-dependent conditioned place preference (CPP). To this end, mice lacking the pro-DYN gene and their wild-type littermates/controls were tested for baseline place preference on day 1, received 15-min morning and afternoon conditionings with saline or ethanol (2 g/kg) each day for three consecutive days and were then tested for CPP under a drug-free state on day 5 and following a saline or ethanol (1 or 2 g/kg) challenge on day 8. Given that compensatory developmental changes may occur in knockout mice, the effect of nor-binaltorphimine (nor-BNI), a KOP antagonist, on state-dependent CPP induced by ethanol was also studied in wild-type mice. On day 1, mice were tested for baseline place preference and, 4 h later, treated with saline or nor-BNI (10 mg/kg). On days 2–4, mice received 15-min morning and afternoon conditionings and were tested for CPP under a drug-free state on day 5 and following an ethanol (1 g/kg) challenge on day 8. A comparable CPP was observed in mice lacking the pro-DYN gene and their wild-type littermates/controls as well as in wild-type mice treated with nor-BNI and their saline-treated controls. However, these mice compared to their respective controls exhibited a greater CPP response following an ethanol (1 g/kg) challenge, suggesting that the endogenous DYN/KOP system may negatively regulate ethanol-induced state-dependent CPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.