Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.convolutional network | neuromorphic | neural network | TrueNorth T he human brain is capable of remarkable acts of perception while consuming very little energy. The dream of brain-inspired computing is to build machines that do the same, requiring high-accuracy algorithms and efficient hardware to run those algorithms. On the algorithm front, building on classic work on backpropagation (1), the neocognitron (2), and convolutional networks (3), deep learning has made great strides in achieving human-level performance on a wide range of recognition tasks (4). On the hardware front, building on foundational work on silicon neural systems (5), neuromorphic computing, using novel architectural primitives, has recently demonstrated hardware capable of running 1 million neurons and 256 million synapses for extremely low power (just 70 mW at real-time operation) (6). Bringing these approaches together holds the promise of a new generation of embedded, real-time systems, but first requires reconciling key differences in the structure and operation between contemporary algorithms and hardware. Here, we introduce and demonstrate an approach we call Eedn, energy-efficient deep neuromorphic networks, which creates convolutional networks whose connections, neurons, and weights have been adapted to run inference tasks on neuromorphic hardware.For structure, typical convolutional networks place no constraints on filter sizes, whereas neuromorphic systems can take advantage of blockwise connectivity that limits filter sizes, thereby saving energy because weights can now be stored in local on-chip memory within dedicated neural cores. Here, we present a convolutional network structure that naturally maps to the efficient connection primitives used in contemporary neuromorphic systems. We enforce this connectivity constraint by partitioning filters into multiple groups and yet maintain network integra...