The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It employs commodity graphics hardware and standard CPU's to achieve real-time performance. We present the main considerations in designing the system and the steps of the processing pipeline. Our system extends existing algorithms to meet the robustness and variability necessary to operate out of the lab. To account for the large dynamic range of outdoor videos the processing pipeline estimates global camera gain changes in the feature tracking stage and efficiently compensates for these in stereo estimation without impacting the real-time performance. The required accuracy for many applications is achieved with a twostep stereo reconstruction process exploiting the redundancy across frames. We show results on real video sequences comprising hundreds of thousands of frames.
We present a viewpoint-based approach for the quick fusion of multiple stereo depth maps. Our method selects depth estimates for each pixel that minimize violations of visibility constraints and thus remove errors and inconsistencies from the depth maps to produce a consistent surface. We advocate a two-stage process in which the first stage generates potentially noisy, overlapping depth maps from a set of calibrated images and the second stage fuses these depth maps to obtain an integrated surface with higher accuracy, suppressed noise, and reduced redundancy. We show that by dividing the processing into two stages we are able to achieve a very high throughput because we are able to use a computationally cheap stereo algorithm and because this architecture is amenable to hardwareaccelerated (GPU) implementations. A rigorous formulation based on the notion of stability of a depth estimate is presented first. It aims to determine the validity of a depth estimate by rendering multiple depth maps into the reference view as well as rendering the reference depth map into the other views in order to detect occlusions and freespace violations. We also present an approximate alternative formulation that selects and validates only one hypothesis based on confidence. Both formulations enable us to perform video-based reconstruction at up to 25 frames per second. We show results on the Multi-View Stereo Evaluation benchmark datasets and several outdoors video sequences. Extensive quantitative analysis is performed using an accurately surveyed model of a real building as ground truth.
Figure 1: Interactive furniture layout. For a given layout (left), our system suggests new layouts (middle) that respect the user's constraints and follow interior design guidelines. The red chair has been fixed in place by the user. One of the suggestions is shown on the right. AbstractWe present an interactive furniture layout system that assists users by suggesting furniture arrangements that are based on interior design guidelines. Our system incorporates the layout guidelines as terms in a density function and generates layout suggestions by rapidly sampling the density function using a hardware-accelerated Monte Carlo sampler. Our results demonstrate that the suggestion generation functionality measurably increases the quality of furniture arrangements produced by participants with no prior training in interior design.
The paper introduces a data collection system and a processing pipeline for automatic geo-registered 3D reconstruction of urban scenes from video. The system collects multiple video streams, as well as GPS and INS measurements in order to place the reconstructed models in georegistered coordinates. Besides high quality in terms of both geometry and appearance, we aim at real-time performance. Even though our processing pipeline is currently far from being real-time, we select techniques and we design processing modules that can achieve fast performance on multiple CPUs and GPUs aiming at real-time performance in the near future. We present the main considerations in designing the system and the steps of the processing pipeline. We show results on real video sequences captured by our system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.