Almost half a billion people world-wide suffer from disabling hearing loss. While hearing aids can partially compensate for this, a large proportion of users struggle to understand speech in situations with background noise. Here, we present a deep learning-based algorithm that selectively suppresses noise while maintaining speech signals. The algorithm restores speech intelligibility for hearing aid users to the level of control subjects with normal hearing. It consists of a deep network that is trained on a large custom database of noisy speech signals and is further optimized by a neural architecture search, using a novel deep learning-based metric for speech intelligibility. The network achieves state-of-the-art denoising on a range of human-graded assessments, generalizes across different noise categories and—in contrast to classic beamforming approaches—operates on a single microphone. The system runs in real time on a laptop, suggesting that large-scale deployment on hearing aid chips could be achieved within a few years. Deep learning-based denoising therefore holds the potential to improve the quality of life of millions of hearing impaired people soon.
Abstract:Motor functions can be hindered in consequence to a stroke or a spinal cord injury. This often results in partial paralyses of the upper limb. The effectiveness of rehabilitation therapy can be improved by the use of rehabilitation robotics and Functional Electrical Stimulation (FES). We consider a hybrid arm weight support combining both. In order to compensate the effect of FES-induced muscle fatigue, we introduce a method to substitute the decreasing level of FES support by cable-driven robotics. We evaluated the approach in a trial with one healthy subject performing repetitive arm lifting. The controller automatically adapted the support and thus no increase in user generated volitional effort was observed when FES induced muscle fatigue occured.
Speech with high sound quality and little noise is central to many of our communication tools, including calls, video conferencing and hearing aids. While human ratings provide the best measure of sound quality, they are costly and time-intensive to gather, thus computational metrics are typically used instead. Here we present a non-intrusive, deep learning-based metric that takes only a sound sample as an input and returns ratings in three categories: overall quality, noise, and sound quality. This metric is available via a web API and is composed of a deep neural network ensemble with 5 networks that use either ResNet-26 architectures with STFT inputs or fully-connected networks with wav2vec features as inputs. The networks are trained and tested on over 1 million crowd-sourced human sound ratings across the three categories. Correlations of our metric with human ratings exceed or match other state-of-the-art metrics on 51 out of 56 benchmark scenes, while not requiring clean speech reference samples as opposed to metrics that are performing well on the other 5 scenes. The benchmark scenes represent a wide variety of acoustic environments and a large selection of post-processing methods that include classical methods (e.g. Wiener-filtering) and newer deep-learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.