Reactive oxygen metabolites are known to disrupt sperm-oocyte fusion, sperm movement, and DNA integrity; however, the relative sensitivities of these elements to oxidative stress are unknown. In this study these factors were assessed in human spermatozoa exposed to increasing levels of oxidative stress achieved through the stimulation of endogenous oxidant generation with NADPH or direct exposure to hydrogen peroxide. At low levels of oxidative stress, DNA fragmentation was significantly reduced while the rates of sperm-oocyte fusion were significantly enhanced. As the level of oxidative stress increased, the spermatozoa exhibited significantly elevated levels of DNA damage (p < 0.001) and yet continued to express an enhanced capacity for sperm-oocyte fusion. At the highest levels of oxidative stress, extremely high rates of DNA fragmentation were observed but the spermatozoa exhibited a parallel loss in their capacities for movement and oocyte fusion. These studies emphasize how redox mechanisms can either enhance or disrupt the functional and genomic integrity of human spermatozoa depending on the intensity of the oxidative stimulus. Because these qualities are affected at different rates, spermatozoa exhibiting significant DNA damage are still capable of fertilizing the oocyte. These results may have long-term implications for the safety of assisted conception procedures in cases associated with oxidative stress.
SummaryDendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141hiXCR1+CLEC9A+ DCs and CD1c+ DCs are murine CD103+ DCs and CD64−CD11b+ DCs. In addition, human tissues also contain CD14+ cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14+ cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14+ monocytes and dermal CD14+ cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14+ cells are CD11b+CD64+ monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system.
• Diverse patient groups with GATA2 mutation develop mononuclear cytopenia and elevated Flt3 ligand. • Progressive cytopenias, risingFlt3 ligand, and terminal differentiation of lymphoid cells accompany clinical progression.Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56 bright NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8 1 memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making. (Blood. 2014;123(6):863-874)
Summary The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL + SIGLEC6 + pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c + DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8 hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8 lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL + SIGLEC6 + pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.
PURPOSE Off-label use of vemurafenib (VMF) to treat BRAFV600E mutation–positive, refractory, childhood Langerhans cell histiocytosis (LCH) was evaluated. PATIENTS AND METHODS Fifty-four patients from 12 countries took VMF 20 mg/kg/d. They were classified according to risk organ involvement: liver, spleen, and/or blood cytopenia. The main evaluation criteria were adverse events (Common Terminology Criteria for Adverse Events [version 4.3]) and therapeutic responses according to Disease Activity Score. RESULTS LCH extent was distributed as follows: 44 with positive and 10 with negative risk organ involvement. Median age at diagnosis was 0.9 years (range, 0.1 to 6.5 years). Median age at VMF initiation was 1.8 years (range, 0.18 to 14 years), with a median follow-up of 22 months (range, 4.3 to 57 months), whereas median treatment duration was 13.9 months (for 855 patient-months). At 8 weeks, 38 complete responses and 16 partial responses had been achieved, with the median Disease Activity Score decreasing from 7 at diagnosis to 0 ( P < .001). Skin rash, the most frequent adverse event, affected 74% of patients. No secondary skin cancer was observed. Therapeutic plasma VMF concentrations (range, 10 to 20 mg/L) seemed to be safe and effective. VMF discontinuation for 30 patients led to 24 LCH reactivations. The blood BRAFV600E allele load, assessed as circulating cell-free DNA, decreased after starting VMF but remained positive (median, 3.6% at diagnosis, and 1.6% during VMF treatment; P < .001) and was associated with a higher risk of reactivation at VMF discontinuation. None of the various empirical therapies (hematopoietic stem-cell transplantation, cladribine and cytarabine, anti-MEK agent, vinblastine, etc) used for maintenance could eradicate the BRAFV600E clone. CONCLUSION VMF seemed safe and effective in children with refractory BRAFV600E-positive LCH. Additional studies are needed to find effective maintenance therapy approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.