Abstract. We present a new algorithm for k-layer straightline crossing minimization which is based on sifting that is a heuristic for dynamic reordering of decision diagrams used during logic synthesis and formal verification of logic circuits. The experiments prove sifting to be very efficient. In particular it outperforms the traditional layer by layer sweep based heuristics known from literature by far when applied to k-layered graphs with k ≥ 3.
Abstract. We introduce a new combinatorial optimization problem, which is a generalization of the Traveling Salesman Problem (TSP) and which we call Traveling Salesman Problem of Second Order (2-TSP). It is motivated by an application in bioinformatics, especially the Permuted Variable Length Markov model. We propose seven elementary heuristics and two exact algorithms for the 2-TSP, some of which are generalizations of similar algorithms for the Asymmetric Traveling Salesman Problem (ATSP), some of which are new ideas. Finally we experimentally compare the algorithms for random instances and real instances from bioinformatics. Our experiments show that for the real instances most heuristics lead to optimum or almost-optimum solutions, and for the random instances the exact algorithms need less time than for the real instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.