The Comité international des poids et mesures (CIPM) has projected a major revision of the International System of Units (SI) in which all of the base units will be defined by fixing the values of fundamental constants of nature. In preparation for this we have carried out a new, low-uncertainty determination of the Boltzmann constant, k B , in terms of which the SI unit of temperature, the kelvin, can be re-defined. We have evaluated k B from exceptionally accurate measurements of the speed of sound in argon gas which can be related directly to the mean molecular kinetic energy, 3 2 k B T . Our new estimate is k B = 1.380 651 56 (98) × 10 −23 J K −1 with a relative standard uncertainty u R = 0.71 × 10 −6 .
We describe the dimensional characterization of copper quasisphere NPL-Cranfield 2. The quasisphere is assembled from two hemispheres such that the internal shape is a triaxial ellipsoid, the major axes of which have nominal radii 62.000 mm, 62.031 mm and 62.062 mm. The artefact has been manufactured using diamond-turning technology and shows a deviation from design form of less than ±1 µm over most of its surface. Our characterization involves both coordinate measuring machine (CMM) experiments and microwave resonance spectroscopy.We have sought to reduce the dimensional uncertainty below the maximum permissible error of the CMM by comparative measurements with silicon and Zerodur spheres of known volume. Using this technique we determined the equivalent radius with an uncertainty of u(k = 1) = 114 nm, a fractional uncertainty of 1.8 parts in 106. Due to anisotropy of the probe response, we could only determine the eccentricities of the quasihemispheres with a fractional uncertainty of approximately 2%.Our microwave characterization uses the TM11 to TM18 resonances. We find the equivalent radius inferred from analysis of these modes to be consistent within ±4 nm with an overall uncertainty u(k = 1) = 11 nm. We discuss corrections for surface conductivity, waveguide perturbations and dielectric surface layers.We find that the CMM radius estimates derived from each hemisphere cannot be used to accurately predict the equivalent radius of the assembled resonator for two reasons. Firstly, the equatorial flanges are flat only to within ±1 µm, leading to an equatorial ‘gap’ whose dimension cannot be reliably estimated. Secondly, the resonator undergoes significant elastic distortion when the bolts connecting the hemispheres are tightened. We provide CMM and microwave measurements to support these conclusions in addition to finite-element modelling.Finally, we consider the implications of this work on a forthcoming experiment to determine the Boltzmann constant with a relative uncertainty below 1 part in 106.
Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported.
The next generation of ground based telescopes require many hundreds of metre scale off-axis mirrors. In this paper the grinding of a 1.45 metre scale Zerodur ® mirror segment for the European Extremely Large Telescope (E-ELT) is introduced. Employing an R-theta grinding mode with a multi stage grinding process material removal rates of up to 187.5 mm 3 /s are achieved, whilst typically removing up to 1 mm depth of material in total. Results show a RMS form error of <1 µm, with subsurface damage < 10 µm, and a production cycle time of under 20 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.