We employed ABI high-density oligonucleotide microarrays containing 31,700 sixty-mer probes (representing 27,868 annotated human genes) to determine differential gene expression in idiopathic dilated cardiomyopathy (DCM). We identified 626 up-regulated and 636 down-regulated genes in DCM compared to controls. Most significant changes occurred in the tricarboxylic acid cycle, angiogenesis, and apoptotic signaling pathways, among which 32 apoptosis- and 13 MAPK activity-related genes were altered. Inorganic cation transporter, catalytic activities, energy metabolism and electron transport-related processes were among the most critically influenced pathways. Among the up-regulated genes were HTRA1 (6.9-fold), PDCD8(AIFM1) (5.2) and PRDX2 (4.4) and the down-regulated genes were NR4A2 (4.8), MX1 (4.3), LGALS9 (4), IFNA13 (4), UNC5D (3.6) and HDAC2 (3) (pb0.05), all of which have no clearly defined cardiac-related function yet. Gene ontology and enrichment analysis also revealed significant alterations in mitochondrial oxidative phosphorylation, metabolism and Alzheimer’s disease pathways. Concordance was also confirmed for a significant number of genes and pathways in an independent validation microarray dataset. Furthermore, verification by real-time RT-PCR showed a high degree of consistency with the microarray results. Our data demonstrate an association of DCM with alterations in various cellular events and multiple yet undeciphered genes that may contribute to heart muscle disease pathways.
BackgroundAngiotensinogen (AGT) constitutes a central component of the renin-angiotensin system that controls the systemic blood pressure and several other cardiovascular functions and may play an important role in atherosclerosis pathways. In this study, we employed TaqMan genotyping assays to evaluate the role of 8 AGT variants in primary hypertension (HTN), type 2 diabetes mellitus (T2DM), and obesity as a possible trigger of coronary artery disease (CAD) in a population of 4615 angiographed native Saudi individuals.MethodsLinkage analysis was done by using the Affymetrix Gene Chip array, sequencing by using the MegaBACE DNA analysis system and genotyping accomplished by TaqMan chemistry using the Applied Biosystem real-time Prism 7900HT Sequence Detection System.ResultsSix variants, rs2067853 GG [Odds ratio(95% Confidence Interval) = 1.44(1.17-1.78); p = 0.001], rs7079 [1.49(1.20-1.85); p < 0.0001], rs699 G [1.19(1.08-1.13); p < 0.0001], rs3789679 A [1.51(1.14-1.99); p = 0.004], rs2148582 GG [1.31(1.11-1.55); p = 0.002] and rs5051 TC + CC [1.32(1.13-1.60); p = 0.001] conferred risk for HTN (3521 cases versus 1094 controls). The rs2067853 (p = 0.042), rs699G (p = 0.007) and rs5051 (p = 0.051) also conferred risk for myocardial infarction (MI; 2982 vs 1633), while rs3789679 A (p < 0.0001) and GA + AA (p < 0.0001) as well as rs4762G (p = 0.019) were associated with obesity (1576 vs 2458). However, while these variants appeared to be also associated with CAD (2323 vs 2292), only the rs7079G (p = 0.035) retained its significant relationship. Interestingly, among the haplotypes constructed from these SNPs, the baseline 8-mer haplotype, GGTGGGGT (χ2 = 7.02; p = 0.0081) and another GGCGGAGT (χ2 = 5.10; p = 0.024), together with several of their derivatives were associated with HTN. T2DM was associated with two 8-mer haplotypes, GGTAGGAC (χ2 = 5.66; p = 0.017) and ATTGAGAC (χ2 = 5.93; p = 0.015), obesity with GGCGGAGT (χ2 = 9.49; p = 0.0021) and MI was linked to ATTGGGAC (χ2 = 6.68; p = 0.010) and GGTGGGAT (χ2 = 4.25; p = 0.039). Furthermore, several causative haplotypes were also shared among the risk traits as well as with CAD.ConclusionThese results point to AGT as independently conferring risk for various cardiovascular traits, and possibly interacting with these traits in events leading to atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.