In this paper, we have proposed three classes of mixture ratio estimators for estimating population mean by using information on auxiliary variables and attributes simultaneously in two-phase sampling under full, partial and no information cases and analyzed the properties of the estimators. A simulated study was carried out to compare the performance of the proposed estimators with the existing estimators of finite population mean. It has been found that the mixture ratio estimator in full information case using multiple auxiliary variables and attributes is more efficient than mean per unit, ratio estimator using one auxiliary variable and one attribute, ratio estimator using multiple auxiliary variable and multiple auxiliary attributes and mixture ratio estimators in both partial and no information case in two-phase sampling. A mixture ratio estimator in partial information case is more efficient than mixture ratio estimators in no information case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.