Dietary phosphorus (P) restriction is known to ameliorate secondary hyperparathyroidism in renal failure patients. In early renal failure, this effect may be mediated by an increase in 1,25-(OH) 2 D 3 , whereas in advanced renal failure, P restriction can act independent of changes in 1,25-(OH) 2 D 3 and serum ionized calcium (ICa). In this study, we examined the effects of dietary P on serum PTH, PTH mRNA, and parathyroid gland (PTG) hyperplasia in uremic rats. Normal and uremic rats were maintained on a low (0.2%) or high (0.8%) P diet for 2 mo. PTG weight and serum PTH were similar in both groups of normal rats and in uremic rats fed the 0.2% P diet. In contrast, there were significant increases in serum PTH (130 Ϯ 25 vs. 35 Ϯ 3.5 pg/ml, P Ͻ 0.01), PTG weight (1.80 Ϯ 0.13 vs. 0.88 Ϯ 0.06 g/gram of body weight, P Ͻ 0.01), and PTG DNA (1.63 Ϯ 0.24 vs. 0.94 Ϯ 0.07 g DNA/gland, P Ͻ 0.01) in the uremic rats fed the 0.8% P diet as compared with uremic rats fed the 0.2% P diet. Serum ICa and 1,25-(OH) 2 D 3 were not altered over this range of dietary P, suggesting a direct effect of P on PTG function. We tested this possibility in organ cultures of rat PTGs. While PTH secretion was acutely (30 min) regulated by medium calcium, the effects of medium P were not evident until 3 h. During a 6-h incubation, PTH accumulation was significantly greater in the 2.8 mM P medium than in the 0.2 mM P medium (1,706 Ϯ 215 vs. 1,033 Ϯ 209 pg/ g DNA, P Ͻ 0.02); the medium ICa was 1.25 mM in both conditions. Medium P did not alter PTH mRNA in this system, but cycloheximide (10 g/ml) abolished the effect of P on PTH secretion. Thus, the effect of P is posttranscriptional, affecting PTH at a translational or posttranslational step. Collectively, these in vivo and in vitro results demonstrate a direct action of P on PTG function that is independent of ICa and 1,25-(OH) 2 D 3 . ( J. Clin. Invest. 1996. 97:2534-2540.)
The vitamin D endocrine system is critical for the proper development and maintenance of mineral ion homeostasis and skeletal integrity. Beyond these classical roles, recent evidence suggests that the bioactive metabolite of vitamin D, 1,25-dihydroxyvitamin D3, functions in diverse physiological processes, such as hair follicle cycling, blood pressure regulation, and mammary gland development. This minireview explores the current progress in unraveling the complexities of the vitamin D endocrine system by focusing on four main areas of research: the resolution of the vitamin D receptor crystal structure, the molecular details of 1,25-dihydroxyvitamin D3-mediated transcription, murine knockout models of key genes in the endocrine system, and alternative vitamin D receptors and ligands.
The vitamin D receptor (VDR) binds the vitamin D-responsive element (VDRE) as a heterodimer with an unidentified receptor auxiliary factor (RAF) present in mammalian cell nuclear extracts. VDR also interacts with the retinoid X receptors (RXRs), implying that RAF may be related to the RXRs. Here we demonstrate that highly purified HeLa cell RAF contained RXR beta immunoreactivity and that both activities copurified and precisely coeluted in high-resolution hydroxylapatite chromatography. Furthermore, an RXR beta-specific antibody disrupted VDR-RAF-VDRE complexes in mobility shift assays. These data strongly indicate that HeLa RAF is highly related to or is identical to RXR beta. Consequently, the effect of the 9-cis retinoic acid ligand for RXRs was examined in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated gene expression systems. Increasing concentrations of 9-cis retinoic acid (1 nM to 1 microM) markedly reduced 1,25(OH)2D3-dependent accumulation of osteocalcin mRNA in osteoblast-like ROS 17/2.8 cells. All-trans retinoic acid also interfered with vitamin D responsiveness, but it was consistently less potent than the 9-cis isomer. Transient transfection studies revealed that attenuation by 9-cis retinoic acid was at the transcriptional level and was mediated through interactions at the osteocalcin VDRE. Furthermore, overexpression of both RXR beta and RXR alpha augmented 1,25(OH)2D3 responsiveness in transient expression studies. Direct analysis of VDRE binding in mobility shift assays demonstrated that heteromeric interactions between VDR and RXR were enhanced by 1,25(OH)2D3 and were not affected appreciably by 9-cis retinoic acid, except that inhibition was observed at high retinoid concentrations. These data suggest a regulatory mechanism for osteocalcin gene expression that involves 1,25(OH)2D3-induced heterodimerization of VDR and unliganded RXR. 9-cis retinoic acid may attenuate 1,25(OH)2D3 responsiveness by diverting RXRs away from VDR-mediated transcription and towards other RXR-dependent transcriptional pathways.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is the biologically active ligand for the vitamin D receptor (VDR). VDR(-/-) mice have a hair follicle-cycling defect resulting in alopecia. However, mice lacking 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1(-/-)), and having no circulating 1,25(OH)(2)D(3), have normal follicular function. These mouse models indicate that VDR functions independently of 1,25(OH)(2)D(3) in regulating hair-follicle cycling. Here, we show that VDR(-/-) mice rapidly develop chemically induced skin tumors, whereas CYP27B1(-/-) and wild-type mice do not, indicating that VDR, and not the 1,25(OH)(2)D(3) ligand, is essential for protection against skin tumorigenesis. Because the majority of human skin cancer results from exposure to UV, the susceptibility of VDR(-/-) mice to this carcinogen was also evaluated. VDR(-/-) mice developed UV-induced tumors more rapidly and with greater penetrance than did VDR(+/+) mice. p53 protein levels were upregulated at similar rates in UV-treated keratinocytes of VDR(-/-) and VDR(+/+) mice. However, rates of thymine-dimer repair and UV-induced apoptosis were significantly lower in VDR(-/-) epidermis compared with the wild type epidermis. UV-induced epidermal thickening was also attenuated in VDR(-/-) skin, indicating that VDR plays a critical role in the repair and removal of severely damaged keratinocytes and adaptation of the skin to chronic UV exposure.
Alopecia is a feature of vitamin D receptor (VDR) mutations in humans and in VDR null mice. This alopecia results from an inability to initiate the anagen phase of the hair cycle after follicle morphogenesis is complete. Thus, once the initial hair is shed it does not regrow. VDR expression in the epidermal component of the hair follicle, the keratinocyte, is critical for maintenance of the hair cycle. To determine which functional domains of the VDR are required for hair cycling, mutant VDR transgenes were targeted to the keratinocytes of VDR null mice. Keratinocyte-specific expression of a VDR transgene with a mutation in the hormone-binding domain that abolishes ligand binding restores normal hair cycling in VDR null mice, whereas a VDR transgene with a mutation in the activation function 2 domain that impairs nuclear receptor coactivator recruitment results in a partial rescue. Mutations in the nuclear receptor corepressor Hairless are also associated with alopecia in humans and mice. Hairless binds the VDR, resulting in transcriptional repression. Neither VDR mutation affects Hairless interactions or its ability to repress transcription. These studies demonstrate that the effects of the VDR on the hair follicle are ligand independent and point to novel molecular and cellular actions of this nuclear receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.