Nocardia terpenica IFM 0406 is the producer of the immunosuppressants brasilicardins A-D. Brasilicardin is a promising compound because of its unique mode of action and its higher potency and reduced toxicity compared to today's standard drugs. However, production of brasilicardin is so far hampered as Nocardia terpenica IFM 0406 synthesizes brasilicardin in only low amounts and represents a human pathogen (biosafety level 2 BSL2). In order to achieve a safe and high yield production of brasilicardin A (BraA), the authors heterologously express the brasilicardin gene cluster in the nocardioform actinomycete Amycolatopsis japonicum (A. japonicum::bcaAB01), which is fast growing, genetically accessible and closely related to N. terpenica IFM 0406. In A. japonicum::bcaAB01, four brasilicardin congeners, intermediates of the BraA biosynthesis, are produced. Investigation of the genes flanking the previously defined brasilicardin biosynthetic gene cluster revealed two novel genes (bra0, bra12), which are involved in brasilicardin biosynthesis: bra12 encodes a transcriptional activator of the brasilicardin gene cluster. bra0 codes for a dioxygenase involved in methoxylation of brasilicardin. Based on this finding the authors are able to revise the proposed brasilicardin biosynthesis.
Brasilicardin A (1) consists of an unusual anti/syn/ anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multistep total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.
The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites.
The isoprenoid brasilicardin A is a promising immunosuppressant compound with a unique mode of action, high potency and reduced toxicity compared to today's standard drugs. However, production of brasilicardin has been hampered since the producer strain Nocardia terpenica IFM0406 synthesizes brasilicardin in only low amounts and is a biosafety level 2 organism. Previously, we were able to heterologously express the brasilicardin gene cluster in the nocardioform actinomycete Amycolatopsis japonicum. Four brasilicardin congeners, intermediates of the BraA biosynthesis, were produced. Since chemical synthesis of the brasilicardin core structure has remained elusive we intended to produce high amounts of the brasilicardin backbone for semi synthesis and derivatization. Therefore, we used a metabolic engineering approach to increase heterologous production of brasilicardin in A. japonicum. Simultaneous heterologous expression of genes encoding the MVA pathway and expression of diterpenoid specific prenyltransferases were used to increase the provision of the isoprenoid precursor isopentenyl diphosphate (IPP) and to channel the precursor into the direction of diterpenoid biosynthesis. Both approaches contributed to an elevated heterologous production of the brasilicardin backbone, which can now be used as a starting point for semi synthesis of new brasilicardin congeners with better properties.
Brasilicardin A (1) consists of an unusual anti/syn/ anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multistep total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.