Aims: To establish a practical postnatal reference range for cardiac troponin T in neonates and to investigate concentrations in neonates with respiratory distress. Methods: Prospective investigation in a tertiary neonatal unit, recruiting infants with and without respiratory distress (sick and healthy infants respectively). Concentrations of cardiac troponin T were compared between sick and healthy infants, accounting for confounding variables. Results: A total of 162 neonates (113 healthy and 49 sick infants) had samples taken. The median (interquartile range) cardiac troponin T concentration in the healthy infants was 0.025 (0.01-0.062) ng/ ml, and the 95th centile was 0.153 ng/ml. There were no significant relations between cardiac troponin T and various variables. The median (interquartile range) cardiac troponin T concentration in the sick infants was 0.159 (0.075-0.308) ng/ml. This was significantly higher (p , 0.0001) than in the healthy infants. In a linear regression model, the use of inotropes and oxygen requirement were significant associations independent of other basic and clinical variables in explaining the variation in cardiac troponin T concentrations. Conclusions: Cardiac troponin T is detectable in the blood of many healthy neonates, but no relation with important basic and clinical variables was found. Sick infants have significantly higher concentrations than healthy infants. The variations in cardiac troponin T concentration were significantly associated with oxygen requirement or the use of inotropic support in a regression model. Cardiac troponin T may be a useful marker of neonatal and cardiorespiratory morbidity.
BackgroundEarly recognition and prompt and appropriate antibiotic treatment can significantly reduce mortality from serious bacterial infections (SBI). The aim of this study was to evaluate the utility of five markers of infection: C-reactive protein (CRP), procalcitonin (PCT), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), CD163 and high mobility group box-1 (HMGB1), as markers of SBI in severely ill Malawian children.Methodology and Principal FindingsChildren presenting with a signs of meningitis (n = 282) or pneumonia (n = 95), were prospectively recruited. Plasma samples were taken on admission for CRP, PCT, sTREM-1 CD163 and HMGB1 and the performance characteristics of each test to diagnose SBI and to predict mortality were determined. Of 377 children, 279 (74%) had SBI and 83 (22%) died. Plasma CRP, PCT, CD163 and HMGB1 and were higher in HIV-infected children than in HIV-uninfected children (p<0.01). In HIV-infected children, CRP and PCT were higher in children with SBI compared to those with no detectable bacterial infection (p<0.0005), and PCT and CD163 were higher in non-survivors (p = 0.001, p = 0.05 respectively). In HIV-uninfected children, CRP and PCT were also higher in children with SBI compared to those with no detectable bacterial infection (p<0.0005), and CD163 was higher in non-survivors (p = 0.05). The best predictors of SBI were CRP and PCT, and areas under the curve (AUCs) were 0.81 (95% CI 0.73–0.89) and 0.86 (95% CI 0.79–0.92) respectively. The best marker for predicting death was PCT, AUC 0.61 (95% CI 0.50–0.71).ConclusionsAdmission PCT and CRP are useful markers of invasive bacterial infection in severely ill African children. The study of these markers using rapid tests in a less selected cohort would be important in this setting.
BACKGROUND: Improving the diagnosis of serious bacterial infections (SBIs) in the children’s emergency department is a clinical priority. Early recognition reduces morbidity and mortality, and supporting clinicians in ruling out SBIs may limit unnecessary admissions and antibiotic use. METHODS: A prospective, diagnostic accuracy study of clinical and biomarker variables in the diagnosis of SBIs (pneumonia or other SBI) in febrile children <16 years old. A diagnostic model was derived by using multinomial logistic regression and internally validated. External validation of a published model was undertaken, followed by model updating and extension by the inclusion of procalcitonin and resistin. RESULTS: There were 1101 children studied, of whom 264 had an SBI. A diagnostic model discriminated well between pneumonia and no SBI (concordance statistic 0.84, 95% confidence interval 0.78–0.90) and between other SBIs and no SBI (0.77, 95% confidence interval 0.71–0.83) on internal validation. A published model discriminated well on external validation. Model updating yielded good calibration with good performance at both high-risk (positive likelihood ratios: 6.46 and 5.13 for pneumonia and other SBI, respectively) and low-risk (negative likelihood ratios: 0.16 and 0.13, respectively) thresholds. Extending the model with procalcitonin and resistin yielded improvements in discrimination. CONCLUSIONS: Diagnostic models discriminated well between pneumonia, other SBIs, and no SBI in febrile children in the emergency department. Improvements in the classification of nonevents have the potential to reduce unnecessary hospital admissions and improve antibiotic prescribing. The benefits of this improved risk prediction should be further evaluated in robust impact studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.