Objectives Third-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections are increasingly reported worldwide. We sought to determine and characterize the mechanisms of cefotaxime resistance employed by urinary E. coli obtained from primary care, over 12 months, in Bristol and surrounding counties in South-West England. Methods Cefalexin-resistant E. coli isolates were identified from GP-referred urine samples using disc susceptibility testing. Cefotaxime resistance was determined by subsequent plating onto MIC breakpoint plates. β-Lactamase genes were detected by PCR. WGS was performed on 225 isolates and analyses were performed using the Center for Genomic Epidemiology platform. Patient information provided by the referring general practices was reviewed. Results Cefalexin-resistant E. coli (n=900) isolates were obtained from urines from 146 general practices. Following deduplication by patient approximately 69% (576/836) of isolates were cefotaxime resistant. WGS of 225 isolates identified that the most common cefotaxime-resistance mechanism was blaCTX-M carriage (185/225), followed by plasmid-mediated AmpCs (pAmpCs) (17/225), AmpC hyperproduction (13/225), ESBL blaSHV variants (6/225) or a combination of both blaCTX-M and pAmpC (4/225). Forty-four STs were identified, with ST131 representing 101/225 isolates, within which clade C2 was dominant (54/101). Ciprofloxacin resistance was observed in 128/225 (56.9%) of sequenced isolates, predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193. Conclusions Most cefalexin-resistant E. coli isolates were cefotaxime resistant, predominantly caused by blaCTX-M carriage. The correlation between cefotaxime resistance and ciprofloxacin resistance was largely attributable to the high-risk pandemic clones ST131 and ST1193. Localized epidemiological data provide greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.
AmpC hyperproduction (13/225; 5.8%), or a combination of both bla CTX-M and pAmpC 4 2 carriage (4/225; 1.8%). Forty-four sequence types (STs) were identified with ST131 4 3 representing 101/225 (45.0%) of sequenced isolates, within which the bla CTX-M-15 -positive 4 4 clade C2 was dominant (54/101; 53.5%). Ciprofloxacin-resistance (CIP-R) was observed in 4 5 128/225 (56.9%) of sequenced CTX-R isolates -predominantly associated with 4 6 fluoroquinolone-resistant clones ST131 and ST1193. 4 7 Conclusions: Most Ceph-R urinary E. colis were CTX-R, predominantly caused by bla CTX-M 4 8 carriage. There was a clear correlation between CTX-R and CIP-R, largely attributable to the 4 9
ObjectiveTo evaluate the effectiveness and cost effectiveness of a complex intervention in primary care that aims to increase uptake of hepatitis C virus (HCV) case finding and treatment.DesignPragmatic, two armed, practice level, cluster randomised controlled trial and economic evaluation.Setting and participants45 general practices in South West England (22 randomised to intervention and 23 to control arm). Outcome data were collected from all intervention practices and 21/23 control practices. Total number of flagged patients was 24 473 (about 5% of practice list).InterventionElectronic algorithm and flag on practice systems identifying patients with HCV risk markers (such as history of opioid dependence or HCV tests with no evidence of referral to hepatology), staff educational training in HCV, and practice posters/leaflets to increase patients’ awareness. Flagged patients were invited by letter for an HCV test (with one follow-up) and had on-screen pop-ups to encourage opportunistic testing. The intervention lasted one year, with practices recruited April to December 2016.Main outcome measuresPrimary outcome: uptake of HCV testing. Secondary outcomes: number of positive HCV tests and yield (proportion HCV positive); HCV treatment assessment at hepatology; cost effectiveness.ResultsBaseline HCV testing of flagged patients (six months before study start) was 608/13 097 (4.6%) in intervention practices and 380/11 376 (3.3%) in control practices. During the study 2071 (16%) of flagged patients in the intervention practices and 1163 (10%) in control practices were tested for HCV: overall intervention effect as an adjusted rate ratio of 1.59 (95% confidence interval 1.21 to 2.08; P<0.001). HCV antibodies were detected in 129 patients from intervention practices and 51 patients from control practices (adjusted rate ratio 2.24, 1.47 to 3.42) with weak evidence of an increase in yield (6.2% v 4.4%; adjusted risk ratio 1.40, 0.99 to 1.95). Referral and assessment increased in intervention practices compared with control practices (adjusted rate ratio 5.78, 1.6 to 21.6) with a risk difference of 1.3 per 1000 and a “number needed to help” of one extra HCV diagnosis, referral, and assessment per 792 (95% confidence interval 558 to 1883) patients flagged. The average cost of HCV case finding was £4.03 (95% confidence interval £2.27 to £5.80) per at risk patient and £3165 per additional patient assessed at hepatology. The incremental cost effectiveness ratio was £6212 per quality adjusted life year (QALY), with 92.5% probability of being below £20 000 per QALY.ConclusionHepCATT had a modest impact but is a low cost intervention that merits optimisation and implementation as part of an NHS strategy to increase HCV testing and treatment.Trial registrationISRCTN61788850.
Background Our primary aim was to test whether cattle-associated fluoroquinolone-resistant (FQ-R) Escherichia coli found on dairy farms are closely phylogenetically related to those causing bacteriuria in humans living in the same 50 × 50 km geographical region suggestive of farm–human sharing. Another aim was to identify risk factors for the presence of FQ-R E. coli on dairy farms. Methods FQ-R E. coli were isolated during 2017–18 from 42 dairy farms and from community urine samples. Forty-two cattle and 489 human urinary isolates were subjected to WGS, allowing phylogenetic comparisons. Risk factors were identified using a Bayesian regularization approach. Results Of 489 FQ-R human isolates, 255 were also third-generation-cephalosporin-resistant, with strong genetic linkage between aac(6’)Ib-cr and blaCTX-M-15. We identified possible farm–human sharing for pairs of ST744 and ST162 isolates, but minimal core genome SNP distances were larger between farm–human pairs of ST744 and ST162 isolates (71 and 63 SNPs, respectively) than between pairs of isolates from different farms (7 and 3 SNPs, respectively). Total farm fluoroquinolone use showed a positive association with the odds of isolating FQ-R E. coli, while total dry cow therapy use showed a negative association. Conclusions This work suggests that FQ-R E. coli found on dairy farms have a limited impact on community bacteriuria within the local human population. Reducing fluoroquinolone use may reduce the on-farm prevalence of FQ-R E. coli and this reduction may be greater when dry cow therapy is targeted to the ecology of resistant E. coli on the farm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.