The immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells 1 – 3 . Considerable effort has been invested using IL-2 as a therapeutic agent for a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic. On activated T cells, IL-2 signals through a quaternary “high affinity” receptor complex consisting of IL-2, IL-2Rα (termed CD25), IL-2Rβ, and γ c 4 – 8 . Naïve T cells express only a low density of IL-2Rβ and γ c , and are therefore relatively insensitive to IL-2, but acquire sensitivity after CD25 expression, which captures the cytokine and presents it to IL-2Rβ andγ c . Here, using in vitro evolution, we eliminated IL-2’s functional requirement for CD25 expression by engineering an IL-2 “superkine” (termed super-2) with increased binding affinity for IL-2Rβ. Crystal structures of super-2 in free and receptor-bound forms showed that the evolved mutations are principally in the core of the cytokine, and molecular dynamics simulations indicated that the evolved mutations stabilized IL-2, including a flexible helix in the IL-2Rβ binding site, into an optimized receptor-binding conformation resembling that when bound to CD25. The evolved mutations in super-2 recapitulated the functional role of CD25 by eliciting potent phosphorylation of STAT5 and vigorous proliferation T cells irrespective of CD25 expression. Compared to IL-2, super-2 induced superior expansion of cytotoxic T cells, leading to improved anti-tumor responses in vivo , and elicited proportionally less expansion of T regulatory cells and reduced pulmonary edema. Collectively, we show that in vitro evolution has mimicked the functional role of CD25 in enhancing IL-2 potency and regulating target cell specificity, which has implications for immunotherapy.
Human nociceptive voltage-gated sodium channel (Na v 1.7), a target of significant interest for the development of antinociceptive agents, is blocked by low nanomolar concentrations of (−)-tetrodotoxin(TTX) but not (+)-saxitoxin (STX) and (+)-gonyautoxin-III (GTX-III). These findings question the long-accepted view that the 1.7 isoform is both tetrodotoxin– and saxitoxin-sensitive and identify the outer pore region of the channel as a possible target for the design of Na v 1.7-selective inhibitors. Single- and double-point amino acid mutagenesis studies along with whole-cell electrophysiology recordings establish two domain III residues (T1398 and I1399), which occur as methionine and aspartate in other Na v isoforms, as critical determinants of STX and gonyautoxin-III binding affinity. An advanced homology model of the Na v pore region is used to provide a structural rationalization for these surprising results.
In the face of drastically rising drug discovery costs, strategies promising to reduce development timelines and expenditures are being pursued. Computer-aided virtual screening and repurposing approved drugs are two such strategies that have shown recent success. Herein, we report the creation of a highly-curated in silico database of chemical structures representing approved drugs, chemical isolates from traditional medicinal herbs, and regulated chemicals, termed the SWEETLEAD database. The motivation for SWEETLEAD stems from the observance of conflicting information in publicly available chemical databases and the lack of a highly curated database of chemical structures for the globally approved drugs. A consensus building scheme surveying information from several publicly accessible databases was employed to identify the correct structure for each chemical. Resulting structures are filtered for the active pharmaceutical ingredient, standardized, and differing formulations of the same drug were combined in the final database. The publically available release of SWEETLEAD (https://simtk.org/home/sweetlead) provides an important tool to enable the successful completion of computer-aided repurposing and drug discovery campaigns.
Isothermal titration calorimetry (ITC) is the only technique able to determine both the enthalpy and entropy of noncovalent association in a single experiment. The standard data analysis method based on nonlinear regression, however, provides unrealistically small uncertainty estimates due to its neglect of dominant sources of error. Here, we present a Bayesian framework for sampling from the posterior distribution of all thermodynamic parameters and other quantities of interest from one or more ITC experiments, allowing uncertainties and correlations to be quantitatively assessed. For a series of ITC measurements on metal:chelator and protein:ligand systems, the Bayesian approach yields uncertainties which represent the variability from experiment to experiment more accurately than the standard data analysis. In some datasets, the median enthalpy of binding is shifted by as much as 1.5 kcal/mol. A Python implementation suitable for analysis of data generated by MicroCal instruments (and adaptable to other calorimeters) is freely available online.
Store-operated calcium (SOC) channels are vital for activation of the immune cells, and mutations in the channel result in severe combined immunodeficiency in human patients. In lymphocytes, SOC entry is mediated by the Orai1 channel, which is activated by direct binding of STIM1. Here we describe an alternative approach for identifying inhibitors of SOC entry using minimal functional domains of STIM1 and Orai1 to screen a small-molecule microarray. This screen identified AnCoA4, which inhibits SOC entry at submicromolar concentrations and blocks T cell activation in vitro and in vivo. Biophysical studies revealed that AnCoA4 binds to the C terminus of Orai1, directly inhibiting calcium influx through the channel and also reducing binding of STIM1. AnCoA4, unlike other reported SOC inhibitors, is a molecule with a known binding site and mechanism of action. These studies also provide proof of principle for an approach to ion channel drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.