New evidence and consensus has led to further revision of the McDonald Criteria for diagnosis of multiple sclerosis. The use of imaging for demonstration of dissemination of central nervous system lesions in space and time has been simplified, and in some circumstances dissemination in space and time can be established by a single scan. These revisions simplify the Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use. Ann Neurol 2011
Adaptation of skeletal muscle to repeated bouts of endurance exercise increases aerobic capacity and improves mitochondrial function. However, the adaptation of human skeletal muscle mitochondrial proteome to short-term endurance exercise training has not been investigated. Eight sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO 2peak ) each day for 14 consecutive days, resulting in an increase in VO 2peak of 17.573.8% (po0.01). Mitochondria-enriched protein fractions from skeletal muscle biopsies taken from m. vastus lateralis at baseline, and on the morning following the 7th and 14th training sessions were subjected to 2-D DIGE analysis with subsequent MS followed by database interrogation to identify the proteins of interest. Thirty-one protein spots were differentially expressed after either 7 or 14 days of training (ANOVA, po0.05). These proteins included subunits of the electron transport chain, enzymes of the tricarboxylic acid cycle, phosphotransfer enzymes, and regulatory factors in mitochondrial protein synthesis, oxygen transport, and antioxidant capacity. Several proteins demonstrated a time course-dependent induction during training. Our results illustrate the phenomenon of skeletal muscle plasticity with the extensive remodelling of the mitochondrial proteome occurring after just 7 days of exercise training suggestive of enhanced capacity for adenosine triphosphate generation at a cellular level.
Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise) the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity) were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise.
Postprandial lipemia (PPL) is associated with impaired endothelial function and inflammation. Acute exercise reduces PPL in adults. This investigation examined the effect of an acute bout of exercise on postprandial changes in triglycerides (TG), glucose, insulin, inflammation [white blood cell count (WBC), interleukin-6 (IL-6) tumor necrosis factor-alpha, C-reactive protein (CRP)] and endothelial activation [soluble intercellular adhesion molecule-1 (sICAM-1), vascular adhesion molecule-1 (sVCAM-1)] following a high-fat meal in adolescents. Ten normal weight (NW) (BMI, 20.9 +/- 1.7 kg m(-2); 15.6 +/- 0.7 years) and eight overweight (OW) (BMI, 28.3 +/- 3.6 kg m(-2); 15.9 +/- 0.4 years) adolescent boys underwent two 6-h oral fat tolerance tests (OFTT) separated by 7-10 days. On the evening prior to each OFTT, subjects either rested or completed a treadmill exercise bout (65% V(O)(2max); 600 kcal expended). Exercise reduced (P < 0.01) the postprandial TG area under the curve by approximately 20% in the NW and OW groups. The postprandial glucose and insulin response did not differ between the control and exercise trials or between the NW and OW groups. Circulating leukocytes and plasma IL-6 levels increased (P < 0.01) in the NW and OW groups 6 h following the OFTT in both experimental conditions. There were no changes in CRP, sVCAM-1 or sICAM-1 following the OFTT and there were no differences between experimental condition or NW and OW groups. In conclusion, a moderate exercise bout prior to a high-fat meal effectively reduces postprandial TG concentrations to a similar degree in both NW and OW adolescents, but does not reduce the concomitant postprandial increase in WBC or IL-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.