This paper reports an investigation of asynchronous flow marks on the surface of injection molded parts and short shots made from two different blends of polypropylene and ethylene-propylene random copolymer elastomers. Flow marks were observed on the surface with both blends; the spatial frequency of flow marks on the surface was greater in the blend B1, which also exhibited a greater contrast between the surface regions. The same blend was distinctly faster in the linear viscoelastic tests of shear creep recovery and shear viscosity growth. The degree of contrast between the flow-mark regions and the out-offlow-mark regions was examined with a detailed analysis of SEM micrographs of the surface regions as well as the near wall regions from short shots. This revealed that the dispersed phase was highly stretched to cylindrical strands in the glossy surface regions of both blends and retracted in the dull regions to different extents in the two cases. A comparison of the particle size distributions and aspect ratio distributions in different regions established that rapid retraction of the suspended elastomer phase was the dominant cause of changes in particle shape between surface regions. Nonlinear shear creep and creep recovery curves of the two elastomer components showed that at a time of 1 s, the fractional strain recovery of the elastomer in B1 was much higher than that of the elastomer in B2. Hence, the nonlinear elastic recovery of the elastomer phase at short times is an important factor in flow mark formation with blends of polypropylene and olefinic elastomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.