Lithium–sulfur batteries are currently being explored as promising advanced energy storage systems due to the high theoretical specific capacity of sulfur. However, achieving a scalable synthesis for the sulfur electrode material whilst maintaining a high volumetric energy density remains a serious challenge. Here, a continuous ball‐milling route is devised for synthesizing multifunctional FeS
2
/FeS/S composites for use as high tap density electrodes. These composites demonstrate a maximum reversible capacity of 1044.7 mAh g
−1
and a peak volumetric capacity of 2131.1 Ah L
−1
after 30 cycles. The binding direction is also considered here for the first time between dissolved lithium polysulfides (LiPSs) and host materials (FeS
2
and FeS in this work) as determined by density functional theory calculations. It is concluded that if only one lithium atom of the polysulfide bonds with the sulfur atoms of FeS
2
or FeS, then any chemical interaction between these species is weak or negligible. In addition, FeS
2
is shown to have a strong catalytic effect on the reduction reactions of LiPSs. This work demonstrates the limitations of a strategy based on chemical interactions to improve cycling stability and offers new insights into the development of high tap density and high‐performance sulfur‐based electrodes.
Nanocrystals are under active investigation because of their interesting size-dependent properties and potential applications. Silicon nanocrystals have been studied for possible uses in optoelectronics, and may be relevant to the understanding of natural processes such as lightning strikes. Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au and CdSe clusters. However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase. In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 degrees C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size-selection.
Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium-sulfur batteries for next-generation energy storage. To trap and re-utilize the polysulfides without hampering lithium ion conductivity, a bio-inspired, brush-like interlayer consisting of zinc oxide (ZnO) nanowires and interconnected conductive frameworks is proposed. The chemical effect of ZnO on capturing polysulfides has been conceptually confirmed, initially by using a commercially available macroporous nickel foam as a conductive backbone, which is then replaced by a free-standing, ultra-light micro/mesoporous carbon (C) nanofiber mat for practical application. Having a high sulfur loading of 3 mg cm −2 , the sulfur/ multi-walled carbon nanotube composite cathode with a ZnO/C interlayer exhibits a reversible capacity of 776 mA h g −1 after 200 cycles at 1C with only 0.05% average capacity loss per cycle. A good cycle performance at a high rate can be mainly attributed to the strong chemical bonding between ZnO and polysulfides, fast electron transfer, and an optimized ion diffusion path arising from a well-organized nanoarchitecture. These results herald a new approach to advanced lithium-sulfur batteries using brush-like chemi-functional interlayers.
Stable and brightly luminescent amine-terminated Si nanoparticles (SiNPs) have been synthesized from electrochemically etched porous silicon (PSi). The surface amine termination was confirmed by FTIR, NMR, and XPS studies. The mean diameter of the crystal core of 4.6 nm was measured by transmission electron microscopy (TEM), which is in a good agreement with the size obtained by dynamic light scattering (DLS). The dry, amine-terminated product can be obtained from bulk silicon wafers in less than 4 h. This represents a significant improvement over similar routines using PSi where times of >10 h are common. The emission quantum yield was found to be about 22% and the nanoparticles exhibited an exceptional stability over a wide pH range (4-14). They are resistant to aging over several weeks. The amine-terminated SiNPs showed no significant cytotoxic effects toward HepG2 cells, as assessed with MTT assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.