The molecular structure of ions retained on mineral surfaces is needed to accurately model their sorption process and to determine their stability. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used in this study to deduce the local coordination environment of two environmental contaminants, arsenate and chromate, on the mineral goethite (R-FeOOH). Based on the oxyanion-Fe distances, it was concluded that three different surface complexes exist on goethite for both oxyanions: a monodentate complex, a bidentate-binuclear complex, and a bidentate-mononuclear complex. At low surface coverages, the monodentate complex was favored while at higher coverages the bidentate complexes were more prevalentsthe bidentate-binuclear complex appears to be in the greatest proportion at these highest surface coverages. Therefore, modeling efforts for chromate or arsenate retention on goethite need to consider a monodentate complex at very low coverages, both the monodentate and bidentate complexes at intermediate coverages, and predominantly the bidentate complexes at very high coverages.
The kinetics of arsenate and chromate adsorption/ desorption on goethite (R-FeOOH) were investigated using a pressure-jump (p-jump) relaxation technique. Information provided by this technique was used to elucidate the fate of arsenate and chromate in natural environments. Chemical relaxations resulting from rapidly induced pressure changes were monitored via conductivity detection. The adsorption/desorption of these oxyanions on goethite involved a double relaxation event. The proposed mechanism for the adsorption of arsenate and chromate on goethite is a two-step process resulting in the formation of an inner-sphere bidentate surface complex. The first step, associated with the fast τ values, involved an initial ligand exchange reaction of aqueous oxyanion species H 2 AsO 4or HCrO 4 -with OH ligands at the goethite surface forming an inner-sphere monodentate surface complex. The subsequent step, associated with the slow τ values, involved a second ligand exchange reaction, resulting in the formation of an inner-sphere bidentate surface complex. Overall, the results suggest that chromate may be the more mobile of the two oxyanions in soil systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.