Floral symmetry has figured prominently in the study of both pollination biology and animal behavior. However, a confusion of terminology and the diffuse nature of the literature has limited our understanding of the role that this basic characteristic of flower form has played in plant-pollinator interactions. Here, we first contribute a classification scheme for floral symmetry that we hope will resolve some of the confusion resulting from the inconsistent application of terms. Next, we present a short review of the distribution of floral forms in angiosperm families. Finally, we provide a list of hypotheses and, when available, supporting evidence for the causes of the evolution of floral symmetry.
Male reproductive success in higher plants depends largely on the fates of pollen, but current methodologies have given only partial insights into this important aspect of plant mating. We present a detailed analysis of the proportions and absolute amounts of stained pollen involved in six key fates for the hawkmoth-pollinated African orchid Disa cooperi . Despite being packaged into pollinaria, high proportions ( > 0.95) of the pollen removed from anthers were lost during transport by hawkmoths in both years. The proportion of pollen lost correlated positively with the number of pollinaria removed from a plant, so that pollen export did not vary with pollen removal. Most pollen was dispersed to neighbouring plants, with rare long-distance dispersal up to 65 m. Of the pollen that reached stigmas during both years, roughly equal amounts were involved in facilitated self-pollination vs. cross-pollination, but the relative proportions of these fates differed between years. Contrary to expectation, we found that self-pollination between flowers did not increase with the number of open flowers, even though moths probed significantly more flowers on larger plants. However, during both years the fraction of removed pollen exported to other plants declined significantly with increasing self-pollination on the source plant, indicating that once self-pollination occurred it reduced (discounted) subsequent pollen export opportunities. The packaging of pollen into pollinaria in orchids appears to increase overall transfer efficiency by at least an order of magnitude relative to plants with granular pollen. Nevertheless, considerable uncertainties remain in the male reproductive success of individual orchids.
Abstract. -The inflorescences of Phyla incisa consist of flowers in two phases: younger, nectarcontaining flowers that have yellow corolla throats and older, nectar-lacking flowers that have dark purple corolla throats. Observations of pollinator visitation patterns to both natural and manipulated inflorescences were made to determine the role ofeach flower phase in pollinator attraction. The effect of older-phase flowers on male and female reproductive success was determined by comparing stigmatic pollen loads and estimates of pollen removal from inflorescences having different numbers of these flowers.The pollinators of Phyla selected larger inflorescences more often than expected based upon the size distribution of inflorescences available to them. Both younger-and older-phase flowers contributed to the attraction of pollinators, but the latter were less effective in this function. The presence of older-phase flowers significantly increased the visitation rate to inflorescences and the amount of pollen removed but had little effect on pollen deposition on stigmas. The lack of correspondence between pollen deposition and pollinator-visitation rate was not due to stigma saturation, since stigma loads varied greatly. The data indicate that the deposition of pollen on stigmas in this species is a relatively stochastic process, whereas pollen removal from inflorescences occurs at a much more regular rate. Old-phase flower retention appears to contribute to reproductive success through increased pollen donation when pollinator activity is high and may also increase the probability of seed set when pollinators are rare.
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed.
Floral symmetry has a relevant status in the study of both pollination biology and animal behavior. In this work, a brief review and classification of symmetry types in flowers is provided as a basis for understanding the role of floral symmetry in pollination phenomena. We focus on insects as a fundamental group of pollinators, and we discuss symmetry from the perspective of insect perception. We conclude that symmetry is a specific cue with a signal value that is perceived by insect pollinators. A simple nervous system, such as that of honeybees, is capable of an extremely flexible and adaptive processing of symmetry. Performances consistent with categorization and concept building may be observed, provided that appropriate learning paradigms are employed. Perfectly symmetrical flowers might signal a high quality and/or quantity of nectar or pollen to pollinators that, in turn, might exert strong selection pressure on symmetric features. However, coadaptation arguments in the strict sense are not adequate because it is impossible to determine whether the insect's capacity to perceive symmetry is younger or older than is the origin of flower symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.