Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
BackgroundCoalescent methods that use multi-locus sequence data are powerful tools for identifying putatively reproductively isolated lineages, though this approach has rarely been used for the study of microbial groups that are likely to harbor many unrecognized species. Among microbial symbionts, integrating genetic species delimitation methods with trait data that could indicate reproductive isolation, such as host specificity data, has rarely been used despite its potential to inform species limits. Here we test the ability of an integrative approach combining genetic and host specificity data to delimit species within the avian malaria parasite genus Leucocytozoon in central Alaska.ResultsWe sequenced seven nuclear loci for 69 Leucocytozoon samples and used multiple species delimitation methods (GMYC and BPP models), tested for differences in host infection patterns among putative species based on 406 individual infections, and characterized parasite morphology. We found that cryptic morphology has masked a highly diverse Leucocytozoon assemblage, with most species delimitation methods recovering support for at least 21 separate species that occur sympatrically and have divergent host infection patterns. Reproductive isolation among putative species appears to have evolved despite low mtDNA divergence, and in one instance two Leucocytozoon cytb haplotypes that differed by a single base pair (~ 0.2% divergence) were supported as separate species. However, there was no consistent association between mtDNA divergence and species limits. Among cytb haplotypes that differed by one to three base pairs we observed idiosyncratic patterns of nuclear and ecological divergence, with cytb haplotype pairs found to be either conspecific, reproductively isolated with no divergence in host specificity, or reproductively isolated with divergent patterns of host specialization.ConclusionIntegrating multi-locus genetic species delimitation methods and non-traditional ecological data types such as host specificity provide a novel view of the diversity of avian malaria parasites that has been missed previously using morphology and mtDNA barcodes. Species delimitation methods show that Leucocytozoon is highly species-rich in Alaska, and the genus is likely to harbor extraordinary species-level diversity worldwide. Integrating genetic and ecological data will be an important approach for understanding the diversity and evolutionary history of microbial symbionts moving forward.Electronic supplementary materialThe online version of this article (10.1186/s12862-018-1242-x) contains supplementary material, which is available to authorized users.
Global-scale gene flow is an important concern in conservation biology as it has the potential to either increase or decrease genetic diversity in species and populations. Although many studies focus on the gene flow between different populations of a single species, the potential for gene flow and introgression between species is understudied, particularly in seabirds. The only well-studied example of a mixed-species, hybridizing population of petrels exists on Round Island, in the Indian Ocean. Previous research assumed that Round Island represents a point of secondary contact between Atlantic (Pterodroma arminjoniana) and Pacific species (Pterodroma neglecta and Pterodroma heraldica). This study uses microsatellite genotyping and tracking data to address the possibility of between-species hybridization occurring outside the Indian Ocean. Dispersal and gene flow spanning three oceans were demonstrated between the species in this complex. Analysis of migration rates estimated using bayesass revealed unidirectional movement of petrels from the Atlantic and Pacific into the Indian Ocean. Conversely, structure analysis revealed gene flow between species of the Atlantic and Pacific oceans, with potential three-way hybrids occurring outside the Indian Ocean. Additionally, geolocation tracking of Round Island petrels revealed two individuals travelling to the Atlantic and Pacific. These results suggest that interspecific hybrids in Pterodroma petrels are more common than was previously assumed. This study is the first of its kind to investigate gene flow between populations of closely related Procellariiform species on a global scale, demonstrating the need for consideration of widespread migration and hybridization in the conservation of threatened seabirds.
The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species’ geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.
The ~1.97 million egg sets (~5 million eggs) housed in museums have not been used in proportion to their availability. We highlight the wide variety of scientific disciplines that have used egg collections and the geographic locations and sizes of these collections, to increase awareness of the importance of egg collections, improve their visibility to the scientific community, and suggest that they offer a wealth of data covering large spatial scales and long time series for broad investigations into avian biology. We provide a brief history of egg collections and an updated list of museums/institutions with egg collections worldwide. We also review the limitations, challenges, and management of egg collections, and summarize recent literature based on historical and recent museum egg materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.