The gene encoding catechol-O-methyltransferase (COMT) is a strong candidate for schizophrenia susceptibility, owing to the role of COMT in dopamine metabolism, and the location of the gene within the deleted region in velocardiofacial syndrome, a disorder associated with high rates of schizophrenia. Recently, a highly significant association was reported between schizophrenia and a COMT haplotype in a large case-control sample (Shifman et al. 2002). In addition to a functional valine-->methionine (Val/Met) polymorphism, this haplotype included two noncoding single-nucleotide polymorphisms (SNPs) at either end of the COMT gene. Given the role of COMT in dopamine catabolism and that deletion of 22q11 (containing COMT) is associated with schizophrenia, we postulated that the susceptibility COMT haplotype is associated with low COMT expression. To test this hypothesis, we have applied quantitative measures of allele-specific expression using mRNA from human brain. We demonstrate that COMT is subject to allelic differences in expression in human brain and that the COMT haplotype implicated in schizophrenia (Shifman et al. 2002) is associated with lower expression of COMT mRNA. We also show that the 3' flanking region SNP that gave greatest evidence for association with schizophrenia in that study is transcribed in human brain and exhibits significant differences in allelic expression, with lower relative expression of the associated allele. Our results indicate that COMT variants other than the Val/Met change are of functional importance in human brain and that the haplotype implicated in schizophrenia susceptibility is likely to exert its effect, directly or indirectly, by down-regulating COMT expression.
The DTNBP1 gene, encoding dysbindin, is now generally considered to be a susceptibility gene for schizophrenia. However, the confidence with which this hypothesis can be held has to be tempered by the poor reproducibility between studies in terms of the exact nature of the associated haplotypes, by the failure so far to identify any specific susceptibility variants and by the absence of any demonstrated function associated with any of the risk haplotypes. In the present study, we show that a defined schizophrenia risk haplotype tags one or more cis-acting variants that results in a relative reduction in DTNBP1 mRNA expression in human cerebral cortex. Subsidiary analyses suggest that risk haplotypes identified in other sample groups of white European ancestry also index lower DTNBP1 expression, whereas putative 'protective' haplotypes index high DTNBP1 expression. Our data indicate that variation in the DTNBP1 gene confers susceptibility to schizophrenia through reduced expression, and that this, therefore, represents a primary aetiological mechanism in the disorder.
At present, the cost of genotyping single nucleotide polymorphisms (SNPs) in large numbers of subjects poses a formidable problem for molecular genetic approaches to complex diseases. We have tested the possibility of using primer extension and denaturing high performance liquid chromatography to estimate allele frequencies of SNPs in pooled DNA samples. Our data show that this method should allow the accurate estimation of absolute allele frequencies in pooled samples of DNA and also of the difference in allele frequency between different pooled DNA samples. This technique therefore offers an efficient and cheap method for genotyping SNPs in large case-control and family-based association samples.
Several studies have shown an association between schizophrenia and the C allele of a T-C polymorphism at nucleotide 102 and the 5HT2A receptor gene. In the present study we observed this association in a sample of 63 parent/offspring trios where the proband received a diagnosis of DSM-III-R schizophrenia using TDT analysis ( 2 = 6.26, P = 0.006, 2 = 9.00, P = 0.001 when one affected offspring was selected at random from each family, suggesting that the results are due to association rather than linkage). There was no significant difference between the transmission of C102 from heterozygous fathers and mothers, which fails to support a role for genomic imprinting in this effect. T102C does not result in an alteration of the amino acid sequence of the protein. We therefore screened the promoter of 5HT2A for polymorphisms using single-strand confirmation polymorphism analysis. An A-G polymorphism at −1438 that creates an HpaII restriction site was identified. This was found to be in complete linkage disequilibrium with T102C and is hence a candidate for the pathogenic variant in schizophrenia. Functional analysis of A-1438G using luciferase assay demonstrated significant basal promoter activity in 5HT2A expressing HeLa cells by both the A and G variants. However, comparison of the A and G variants showed no significant differences in basal activity nor when promoter activity was induced by cAMP and protein kinase C-dependent mechanisms.Keywords: schizophrenia; 5HT2A; serotonin receptor; 5HT2A receptor; genetics; allelic association Introduction genetic associations can lead to both false positive and false negative findings if there is population stratifiSeveral studies have shown an association between cation. Although attempts were made in most of the schizophrenia and allele 2 (C) of a T-C polymorphism previous studies to match for ethnicity, it is still possat nucleotide 102 in the 5HT2A receptor gene. [1][2][3] ible that stratification effects occurred. Family-based Although the odds ratios are small (1.7 for possession association designs overcome problems of stratifiof one or more copies of allele 2 2 ), the attributable fraccation. 11 Accordingly, we obtained DNA from parents tion is relatively high (0.35), because allele 2 is comof our original sample where available 2 and from mon in the general population. This association is additional parent/affected-offspring trios. In addition, therefore potentially of considerable therapeutic this approach has also allowed us to test for parentimportance. Some studies have failed to replicate these of-origin effects, a possibility highlighted by a recent findings, but they have all been small and lack of demonstration of genomic inprinting at this locus. 12 power 4-9 is one explanation for their failure to demonThe T102C polymorphism does not result in alterstrate a significant association. Indeed the results of a ation of the amino-acid sequence of the protein. It is recent meta-analysis including all published studies therefore likely that this polymorphism is no...
There is now strong evidence that Neuregulin 1 (NRG1) is a susceptibility gene for schizophrenia. NRG1 mediates some of its effects through the tyrosine kinase receptor erbB4, and analysis of gene knock-out animals suggests that the functional interaction of NRG1 and erbB4 mediates behaviors that may model some aspects of the schizophrenia phenotype in mice. Given these findings, we have sought evidence for association between schizophrenia and erbB4. Mutation screening of erbB4 in 14 DSMIV schizophrenics revealed 15 SNPs, none of which were nonsynonymous. Analysis of the allele frequencies of each SNP in pools of 368 DSMIV schizophrenics and 368 controls provided modest evidence for association with two of the SNPs, although individual genotyping in an extended sample of 680 cases did not confirm this. However, we did find evidence for a significant interaction between the NRG1 "Icelandic" schizophrenia risk haplotype and erbB4 (P = 0.019). The NRG1 and erbB4 interacting marker was further genotyped in an independent sample of 290 cases and 634 controls from Dublin. Interaction between NRG1 and erbB4 remained significant in the combined sample of 970 cases and 1,341 controls, OR = 2.98 (CI: 1.16-7.64), P = 0.01, although it only showed a trend in the Dublin sample alone (P = 0.11, two tailed). Our data require independent replication, but tentatively suggest that NRG1 may mediate its effects on schizophrenia susceptibility through functional interaction with erbB4, and that genetic interaction between variants at the two loci increases susceptibility to schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.