The sulfonylurea 1 transient receptor potential melastatin 4 (Sur1-Trpm4) receptor is selectively expressed after intracerebral hemorrhage (ICH). This upregulation contributes to increases in intracellular sodium. Water follows sodium through aquaporin channels, leading to cytotoxic edema. Even after edema is thought to have resolved, ionic dyshomeostasis persists, as does blood-brain barrier (BBB) damage. Glibenclamide, a hypoglycemic agent that inhibits Sur1-Trpm4, has been shown to reduce BBB damage and edema following infusion of autologous blood into the brain (ICH) as well as after other brain injuries. In order to further assess efficacy, we used the collagenase ICH model in rats to test whether glibenclamide reduces edema, attenuates ion dyshomeostasis, improves BBB damage, and reduces lesion volume. We tested a widely-used glibenclamide dose shown effective in other studies (10 μg/kg loading dose followed by 200 ng/hr for up to 7 days). Early initiation of glibenclamide did not significantly impact edema (72 hours), BBB permeability (72 hours), or lesion volume after ICH (28 days). Recovery from neurological impairments was also not improved by glibenclamide. These results suggest that glibenclamide will not improve outcome in ICH. However, the treatment appeared to be safe as there was no effect on bleeding or other physiological variables.
The therapeutic time window for N-methyl-D-aspartate (NMDA) antagonists, non-NMDA antagonists, and glutamate release inhibitors in focal models of ischemia appears to be about 1-2 h. In contrast, a free radical spin trap was found to have an improved therapeutic window. We compared the therapeutic time windows of the NMDA antagonist dizolcilpine maleate (MK-801), the glutamate release inhibitor lamotrigine, and the free radical spin trap n-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) against striatal lesions produced by the mitochondrial toxin malonate, which produces histotoxic hypoxia. Lamotrigine exerted neuroprotective effects when administered at 1 h before malonate injections. MK-801 protected at 1 h before and 1 h after malonate injections, whereas S-PBN showed efficacy when administered up to 6 h after malonate injections. Striatal injections of malonate produced a rapid increase in lactate production and early changes in diffusion-weighted imaging as assessed by magnetic resonance imaging. Therefore, the time course to evolve a lesion in our model of histotoxic hypoxia is comparable with that of other models of focal ischemia. These findings provide direct evidence that a free radical spin trap has an improved therapeutic window compared to an NMDA antagonist and a glutamate release inhibitor. This could be a therapeutic advantage in the treatment of clinical stroke patients.
After intracerebral hemorrhage (ICH), brain edema commonly occurs and can cause death. Along with edema, there are significant alterations in the concentrations of key ions such as sodium, potassium, and chloride, which are essential to brain function. NKCC1, a cation-chloride cotransporter, is upregulated after brain damage, such as traumatic injury and ischemic stroke. NKCC1 brings sodium and chloride into the cell, possibly worsening ion dyshomeostasis. Bumetanide, a specific NKCC1 antagonist, blocks the transport of chloride into cells, and thus should attenuate the increases in chloride, which should lessen brain edema and improve neuronal functioning post-ICH, as with other injuries. We used the collagenase model of ICH to test whether bumetanide treatment for three days (vs. vehicle) would improve outcome. We gave bumetanide beginning at two hours or seven days post-ICH and measured behavioural outcome, edema, and brain ion content after treatment. There was some evidence for a minor reduction in edema after early dosing, but this did not improve behaviour or lessen injury. Contrary to our hypothesis, bumetanide did not normalize ion concentrations after late dosing. Bumetanide did not improve behavioural outcome or affect lesion volume. After ICH, bumetanide is safe to use in rats but does not improve functional outcome in the majority of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.