Social bots – partially or fully automated accounts on social media platforms – have not only been widely discussed, but have also entered political, media and research agendas. However, bot detection is not an exact science. Quantitative estimates of bot prevalence vary considerably and comparative research is rare. We show that findings on the prevalence and activity of bots on Twitter depend strongly on the methods used to identify automated accounts. We search for bots in political discourses on Twitter, using three different bot detection methods: Botometer, Tweetbotornot and “heavy automation”. We drew a sample of 122,884 unique user Twitter accounts that had produced 263,821 tweets contributing to five political discourses in five Western democracies. While all three bot detection methods classified accounts as bots in all our cases, the comparison shows that the three approaches produce very different results. We discuss why neither manual validation nor triangulation resolves the basic problems, and conclude that social scientists studying the influence of social bots on (political) communication and discourse dynamics should be careful with easy-to-use methods, and consider interdisciplinary research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.