Trehalose is a non-reducing disaccharide comprising two glucose molecules. It is present in high concentration as the main haemolymph (blood) sugar in insects. The synthesis of trehalose in the fat body (an organ analogous in function to a combination of liver and adipose tissue in vertebrates) is stimulated by neuropeptides (hypertrehalosaemic hormones), released from the corpora cardiaca, a neurohaemal organ associated with the brain. The peptides cause a decrease in the content of fructose 2,6-biphosphate in fat body cells. Fructose 2,6-biphosphate, acting synergistically with AMP, is a potent activator of the glycolytic enzyme 6-phosphofructokinase-1 and a strong inhibitor of the gluconeogenic enzyme fructose 1,6-biphosphatase. This indicates that fructose 2,6-biphosphate is a key metabolic signal in the regulation of trehalose synthesis in insects. Trehalose is hydrolysed by trehalase (E.C. 3.2.1.28). The activity of this enzyme is regulated in flight muscle, but the mechanism by which this is achieved is unknown. Trehalase from locust flight muscle is a glycoprotein bound to membranes of the microsomal fraction. The enzyme can be activated by detergents in vitro and by short flight intervals in vivo, which indicates that changes in the membrane environment modulate trehalase activity under physiological conditions.
SUMMARY The main blood sugar of locusts is trehalose, which is hydrolysed to two glucose units by trehalase. Homogenates of locust flight muscles are rich in trehalase activity, which is bound to membranes. A minor fraction of trehalase is in an overt form while the remainder is latent, i.e. active only after impairing membrane integrity. Trehazolin, an antibiotic pseudosaccharide,inhibits locust flight muscle trehalase with apparent Ki-and EC50 values of 10–8 mol l–1and 10–7 mol l–1, respectively. Trehazolin is insecticidal: 50 μg injected into locusts completely and selectively blocked the overt form of muscle trehalase (with little effect on latent activity) and killed 50% of the insects within 24 h. Here, it is demonstrated for the first time that trehazolin causes dramatic hypoglycaemia. Injection of 10 μg trehazolin caused glucose levels to fall by over 90% in 24 h, from 2.8 mmol l–1 to 0.23 mmol l–1, while trehalose increased from 61 mmol l–1 to 111 mmol l–1. Feeding glucose to the locusts fully neutralized the effects of a potentially lethal dose of trehazolin. This indicates that hypertrehalosaemia is not acutely toxic, whereas lack of glucose causes organ failure (presumably of the nervous system), and that sufficient haemolymph glucose can only be generated from trehalose by trehalase. The results also suggest that overt flight muscle trehalase is located in the plasma membrane with the active site accessible to the haemolymph. Trehalase inhibitors are valuable tools for studying the molecular physiology of trehalase function and sugar metabolism in insects.
SUMMARY Trehalase (EC 3.2.1.28) hydrolyzes the main haemolymph sugar of insects, trehalose, into the essential cellular substrate glucose. Trehalase in locust flight muscle is bound to membranes that appear in the microsomal fraction upon tissue fractionation, but the exact location in vivo has remained elusive. Trehalase has been proposed to be regulated by a novel type of activity control that is based on the reversible transformation of a latent (inactive) form into an overt (active) form. Most trehalase activity from saline-injected controls was membrane-bound (95%) and comprised an overt form (∼25%) and a latent form (75%). Latent trehalase could be assayed only after the integrity of membranes had been destroyed. Trehazolin, a potent tight-binding inhibitor of trehalase, is confined to the extracellular space and has been used as a tool to gather information on the relationship between latent and overt trehalase. Trehazolin was injected into the haemolymph of locusts, and the trehalase activity of the flight muscle was determined at different times over a 30-day period. Total trehalase activity in locust flight muscle was markedly inhibited during the first half of the interval, but reappeared during the second half. Inhibition of the overt form preceded inhibition of the latent form, and the time course suggested a reversible precursor–product relation (cycling) between the two forms. The results support the working hypothesis that trehalase functions as an ectoenzyme, the activity of which is regulated by reversible transformation of latent into overt trehalase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.