We present a method for reconstructing the global position of motion capture where position sensing is poor or unavailable. Capture systems, such as IMU suits, can provide excellent pose and orientation data of a capture subject, but otherwise need post processing to estimate global position. We propose a solution that trains a neural network to predict, in real-time, the height and body displacement given a short window of pose and orientation data. Our training dataset contains pre-recorded data with global positions from many different capture subjects, performing a wide variety of activities in order to broadly train a network to estimate on like and unseen activities. We compare training on two network architectures, a universal network (u-net) and a traditional convolutional neural network (CNN) - observing better error properties for the u-net in our results. We also evaluate our method for different classes of motion. We observe high quality results for motion examples with good representation in specialized datasets, while general performance appears better in a more broadly sampled dataset when input motions are far from training examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.