The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy.
The structure and folding of dihydrofolate reductase (DHFR) from Escherichia coli and the mutant G121V-DHFR, in which glycine 121 in the exterior FG loop was replaced with valine, were studied by molecular dynamics simulations and CD and fluorescence spectroscopy. The importance of residue 121 for the chemical step during DHFR catalysis had been demonstrated previously. High-temperature MD simulations indicated that while DHFR and G121V-DHFR followed similar unfolding pathways, the strong contacts between the M20 loop and the FG loop in DHFR were less stable in the mutant. These contacts have been proposed to be involved in a coupled network of interactions that influence the protein dynamics and promote catalysis [Benkovic, S. J., and Hammes-Schiffer, S. (2003) Science 301, 1196-1202]. CD spectroscopy of DHFR and G121V-DHFR indicated that the two proteins existed in different conformations at room temperature. While the thermally induced unfolding of DHFR was highly cooperative with a midpoint at 51.6 +/- 0.7 degrees C, G121V-DHFR exhibited a gradual decrease in its level of secondary structure without a clear melting temperature. Temperature-induced unfolding and renaturation from the urea-denatured state revealed that both proteins folded via highly fluorescent intermediates. The formation of these intermediates occurred with relaxation times of 149 +/- 4.5 and 256 +/- 13 ms for DHFR and G121V-DHFR, respectively. The fluorescence intensity for the intermediates formed during refolding of G121V-DHFR was approximately twice that of the wild-type. While the fluorescence intensity then slowly decayed for DHFR toward a state representing the native protein, G121V-DHFR appeared to be trapped in a highly fluorescent state. These results suggest that the reduced catalytic activity of G121V-DHFR is the consequence of nonlocal structural effects that may result in a perturbation of the network of promoting motions.
Dihydrofolate reductase (DHFR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of 7,8-dihydrofolate (H 2 F) to 5,6,7,8-tetrahydrofolate (H 4 F). Because of the absence of any ionizable group in the vicinity of N5 of dihydrofolate it has been proposed that N5 could be protonated directly by a water molecule at the active site in the ternary complex of the Escherichia coli enzyme with cofactor and substrate. However, in the X-ray structures representing the Michaelis complex of the E. coli enzyme, a water molecule has never been observed in a position that could allow protonation of N5. In fact, the side chain of Met 20 blocks access to N5. Energy minimization reported here revealed that water could be placed in hydrogen bonding distance of N5 with only minor conformational changes. The r.m.s. deviation between the conformation of the M20 loop observed in the crystal structures of the ternary complexes and the conformation adopted after energy minimization was only 0.79 Å. We performed molecular dynamics simulations to determine the accessibility by water of the active site of the Michaelis complex of DHFR. Water could access N5 relatively freely after an equilibration time of approximately 300 psec during which the side chain of Met 20 blocked water access. Protonation of N5 did not increase the accessibility by water. Surprisingly the number of near-attack conformations, in which the distance between the pro-R hydrogen of NADPH and C6 of dihydrofolate was less than 3.5 Å and the angle between C4 and the pro-R hydrogen of NADPH and C6 of dihydrofolate was greater than 120 degrees, did not increase after protonation. However, when the hydride was transferred from NADPH to C6 of dihydrofolate before protonation, the side chain of Met 20 moved away from N5 after approximately 100 psec thereby providing water access. The average time during which water was found in hydrogen bonding distance to N5 was significantly increased. These results suggest that hydride transfer might occur early to midway through the reaction followed by protonation. Such a mechanism is supported by the very close contact between C4 of NADP + and C6 of folate observed in the crystal structures of the ternary enzyme complexes, when the M20 loop is in its closed conformation.
Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for future ligand design in lead optimization procedures. The approach can readily be extended to evaluate the binding affinities of a series of protein-protein complexes.
Despite much work, many key aspects of the mechanism of the dihydrofolate reductase (DHFR) catalyzed reduction of dihydrofolate remain unresolved. In bacterial forms of DHFR both substrate and water access to the active site are controlled by the conformation of the mobile M20 loop. In vertebrate DHFRs only one conformation of the residues corresponding to the M20 loop has been observed. Access to the active site was proposed to be controlled by residue 31. MD simulations of chicken DHFR complexed with substrates and cofactor revealed a closing of the side chain of Tyr 31 over the active site on binding of dihydrofolate. This conformational change was dependent on the presence of glutamate on the para-aminobenzoylamide moiety of dihydrofolate. In its absence, the conformation remained open. Although water could enter the active site and hydrogen bond to N5 of dihydrofolate, indicating the feasibility of water as the proton donor, this was not controlled by the conformation of Tyr 31. The water accessibility of the active site was low for both conformations of Tyr 31. However, when hydride was transferred from NADPH to C6 of dihydrofolate before protonation, the average time during which water was found in hydrogen bonding distance to N5 of dihydrofolate in the active site increased almost fivefold. These results indicated that water can serve as the Broensted acid for the protonation of N5 of dihydrofolate during the DHFR catalyzed reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.