Resolving the early diversification of animal lineages has proven difficult, even using genome-scale datasets. Several phylogenomic studies have supported the classical scenario in which sponges (Porifera) are the sister group to all other animals ("Porifera-sister" hypothesis), consistent with a single origin of the gut, nerve cells, and muscle cells in the stem lineage of eumetazoans (bilaterians + ctenophores + cnidarians). In contrast, several other studies have recovered an alternative topology in which ctenophores are the sister group to all other animals (including sponges). The "Ctenophora-sister" hypothesis implies that eumetazoan-specific traits, such as neurons and muscle cells, either evolved once along the metazoan stem lineage and were then lost in sponges and placozoans or evolved at least twice independently in Ctenophora and in Cnidaria + Bilateria. Here, we report on our reconstruction of deep metazoan relationships using a 1,719-gene dataset with dense taxonomic sampling of non-bilaterian animals that was assembled using a semi-automated procedure, designed to reduce known error sources. Our dataset outperforms previous metazoan gene superalignments in terms of data quality and quantity. Analyses with a best-fitting site-heterogeneous evolutionary model provide strong statistical support for placing sponges as the sister-group to all other metazoans, with ctenophores emerging as the second-earliest branching animal lineage. Only those methodological settings that exacerbated long-branch attraction artifacts yielded Ctenophora-sister. These results show that methodological issues must be carefully addressed to tackle difficult phylogenetic questions and pave the road to a better understanding of how fundamental features of animal body plans have emerged.
BackgroundTunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species.ResultsPhylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450–350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages.ConclusionsOur study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies.Electronic supplementary materialThe online version of this article (10.1186/s12915-018-0499-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.