Integrating intermittent renewable energy sources has renders the power network operator task of balancing electricity generation and consumption increasingly challenging. Aside from heavily investing in additional storage capacities, an interesting solution might be the use predictive control methods to shift controllable loads toward production periods. Therefore, this article introduces a systematic approach to provide a preliminary evaluation of the thermoeconomic impact of model predictive control (MPC) when being applied to modern and complex building energy systems (BES). The proposed method applies an ϵ-constraint multi-objective optimization to generate a large panel of different BES configurations and their respective operating strategies. The problem formulation relies on a holistic BES framework to satisfy the different building service requirements using a mixed-integer linear programming technique. To illustrate the contribution of MPC, different applications on the single-and multi-dwelling level are presented and analyzed. The results suggest that MPC can facilitate the integration of renewable energy sources within the built environment by adjusting the heating and cooling demand to the fluctuating renewable generation, increasing the share of self-consumption by up to 27% while decreasing the operating expenses by up to 3% on the single-building level. Finally, a preliminary assessment of the national-wide potential is performed by means of an extended implementation on the Swiss building stock.
This paper presents a flexible and modular control scheme based on distributed model predictive control (DMPC) to achieve optimal operation of decentralized energy systems in smart grids. The proposed approach is used to coordinate multiple distributed energy resources (DERs) in a low voltage (LV) microgrid and therefore, allow virtual power plant (VPP) operation. A sequential and iterative DMPC formulation is shown which incorporates global grid targets along with the local comfort requirements and performance indices. The preliminary results generated by the simulation of a studied case proves the benefits of applying such a control scheme to a benchmark low voltage microgrid
In order to fully exploit the potential of renewable energy resources (RERs) for building applications, optimal design and control of the different energy systems is a compelling challenge to address. This paper presents a two-step multi-objective optimization approach to size both thermal and electrical energy systems in regard of thermo-economic performance indicators to suit consumer and grid operator interests. Several utilities such as storage, conversion systems, and RERs are hence modelled and formulated through mixed-integer linear programming. Simultaneously, the algorithm defines the optimal operation strategy, based on a model predictive control structure, for each deterministic unit embedded within the energy management system of the building to meet the different comfort and service requirements.The developed design framework is successfully applied on several energy systems configuration of typical Swiss building types. Different component sizes are analysed, regarding the present investment cost and the self-consumption share. In addition, this paper presents a novel optimal design criteria based on the maximum cost benefits in the view of both the consumer and the distribution network operator.Keywords: Multi-Objective Optimization, Optimal design and control, Distributed Energy System, System Modelling, Complete building simulation Highlights• K-medoids clustering of the input data to improve computational efforts • Advanced thermal modelling by applying discrete control-oriented models of thermo-electrical energy systems and heat cascading. * Corresponding author, Phone Number: +41 21 695 82 60
In the context of increasing concern for anthropogenic CO2 emissions, the residential building sector still represents a major contributor to energy demand. The integration of renewable energy sources, and particularly of photovoltaic (PV) panels, is becoming an increasingly widespread solution for reducing the carbon footprint of building energy systems (BES). However, the volatility of the energy generation and its mismatch with the typical demand patterns are cause for concern, particularly from the viewpoint of the management of the power grid. This paper aims to show the influence of the orientation of photovoltaic panels in designing new BES and to provide support to the decision making process of optimal PV placing. The subject is addressed with a mixed integer linear optimization problem, with costs as objectives and the installation, tilt, and azimuth of PV panels as the main decision variables. Compared with existing BES optimization approaches reported in literature, the contribution of PV panels is modeled in more detail, including a more accurate solar irradiation model and the shading effect among panels. Compared with existing studies in PV modeling, the interaction between the PV panels and the remaining units of the BES, including the effects of optimal, scheduling is considered. The study is based on data from a residential district with 40 buildings in western Switzerland. The results confirm the relevant influence of PV panels’ azimuth and tilt on the performance of BES. Whereas south-orientation remains the most preferred choice, west-orientationed panels better match the demand when compared with east-orientationed panels. Apart from the benefits for individual buildings, an appropriate choice of orientation was shown to benefit the grid: rotating the panels 20° westwards can, together with an appropriate scheduling of the BES, reduce the peak power of the exchange with the power grid by 50% while increasing total cost by only 8.3%. Including the more detailed modeling of the PV energy generation demonstrated that assuming horizontal surfaces can lead to inaccuracies of up to 20% when calculating operating expenses and electricity generated, particularly for high levels of PV penetration.
The residential sector accounts for a large share of worldwide energy consumption, yet is difficult to characterise, since consumption profiles depend on several factors from geographical location to individual building occupant behaviour. Given this difficulty, the fact that energy used in this sector is primarily derived from fossil fuels and the latest energy policies around the world (e.g., Europe 20-20-20), a method able to systematically integrate multi-energy networks and low carbon resources in urban systems is clearly required. This work proposes such a method, which uses process integration techniques and mixed integer linear programming to optimise energy systems at both the individual building and district levels. Parametric optimisation is applied as a systematic way to generate interesting solutions for all budgets (i.e., investment cost limits) and two approaches to temporal data treatment are evaluated: monthly average and hourly typical day resolution. The city center of Geneva is used as a first case study to compare the time resolutions and results highlight that implicit peak shaving occurs when data are reduced to monthly averages. Consequently, solutions reveal lower operating costs and higher self-sufficiency scenarios compared to using a finer resolution but with similar relative cost contributions. Therefore, monthly resolution is used for the second case study, the whole canton of Geneva, in the interest of reducing the data processing and computation time as a primary objective of the study is to discover the main cost contributors. The canton is used as a case study to analyse the penetration of low temperature, CO2-based, advanced fourth generation district energy networks with population density. The results reveal that only areas with a piping cost lower than 21.5 k/100 m2ERA connect to the low-temperature network in the intermediate scenarios, while all areas must connect to achieve the minimum operating cost result. Parallel coordinates are employed to better visualise the key performance indicators at canton and commune level together with the breakdown of energy (electricity and natural gas) imports/exports and investment cost to highlight the main contributors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.